Combining Sample Plot Stratification and Machine Learning Algorithms to Improve Forest Aboveground Carbon Density Estimation in Northeast China Using Airborne LiDAR Data

被引:16
作者
Chen, Mingjie [1 ]
Qiu, Xincai [2 ]
Zeng, Weisheng [3 ]
Peng, Daoli [1 ]
机构
[1] Beijing Forestry Univ, Coll Forestry, State Forestry & Grassland Adm Key Lab Forest Res, Beijing 100083, Peoples R China
[2] Hainan Univ, Coll Forestry, Intelligent Forestry Key Lab Haikou City, Haikou 570228, Hainan, Peoples R China
[3] Natl Forestry & Grassland Adm, Acad Inventory & Planning, Beijing 100714, Peoples R China
基金
国家重点研发计划;
关键词
aboveground carbon density; LiDAR; stratified estimation; machine learning algorithm; Northeast China; BIOMASS ESTIMATION; MULTISPECTRAL DATA; TEMPERATE; INTENSITY; AREA; UNCERTAINTY; EXPANSION; STORAGE; METRICS; VOLUME;
D O I
10.3390/rs14061477
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Timely, accurate estimates of forest aboveground carbon density (AGC) are essential for understanding the global carbon cycle and providing crucial reference information for climate-change-related policies. To date, airborne LiDAR has been considered as the most precise remote-sensing-based technology for forest AGC estimation, but it suffers great challenges from various uncertainty sources. Stratified estimation has the potential to reduce the uncertainty and improve the forest AGC estimation. However, the impact of stratification and how to effectively combine stratification and modeling algorithms have not been fully investigated in forest AGC estimation. In this study, we performed a comparative analysis of different stratification approaches (non-stratification, forest type stratification (FTS) and dominant species stratification (DSS)) and different modeling algorithms (stepwise regression, random forest (RF), Cubist, extreme gradient boosting (XGBoost) and categorical boosting (CatBoost)) to identify the optimal stratification approach and modeling algorithm for forest AGC estimation, using airborne LiDAR data. The analysis of variance (ANOVA) was used to quantify and determine the factors that had a significant effect on the estimation accuracy. The results revealed the superiority of stratified estimation models over the unstratified ones, with higher estimation accuracy achieved by the DSS models. Moreover, this improvement was more significant in coniferous species than broadleaf species. The ML algorithms outperformed stepwise regression and the CatBoost models based on DSS provided the highest estimation accuracy (R-2 = 0.8232, RMSE = 5.2421, RRMSE = 20.5680, MAE = 4.0169 and Bias = 0.4493). The ANOVA of the prediction error indicated that the stratification method was a more important factor than the regression algorithm in forest AGC estimation. This study demonstrated the positive effect of stratification and how the combination of DSS and the CatBoost algorithm can effectively improve the estimation accuracy of forest AGC. Integrating this strategy with national forest inventory could help improve the monitoring of forest carbon stock over large areas.
引用
收藏
页数:30
相关论文
共 99 条
[11]   Improved allometric models to estimate the aboveground biomass of tropical trees [J].
Chave, Jerome ;
Rejou-Mechain, Maxime ;
Burquez, Alberto ;
Chidumayo, Emmanuel ;
Colgan, Matthew S. ;
Delitti, Welington B. C. ;
Duque, Alvaro ;
Eid, Tron ;
Fearnside, Philip M. ;
Goodman, Rosa C. ;
Henry, Matieu ;
Martinez-Yrizar, Angelina ;
Mugasha, Wilson A. ;
Muller-Landau, Helene C. ;
Mencuccini, Maurizio ;
Nelson, Bruce W. ;
Ngomanda, Alfred ;
Nogueira, Euler M. ;
Ortiz-Malavassi, Edgar ;
Pelissier, Raphael ;
Ploton, Pierre ;
Ryan, Casey M. ;
Saldarriaga, Juan G. ;
Vieilledent, Ghislain .
GLOBAL CHANGE BIOLOGY, 2014, 20 (10) :3177-3190
[12]   Uncertainty of remotely sensed aboveground biomass over an African tropical forest: Propagating errors from trees to plots to pixels [J].
Chen, Qi ;
Laurin, Gaia Vaglio ;
Valentini, Riccardo .
REMOTE SENSING OF ENVIRONMENT, 2015, 160 :134-143
[13]   XGBoost: A Scalable Tree Boosting System [J].
Chen, Tianqi ;
Guestrin, Carlos .
KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2016, :785-794
[14]   Tropical forest biomass estimation and the fallacy of misplaced concreteness [J].
Clark, David B. ;
Kellner, James R. .
JOURNAL OF VEGETATION SCIENCE, 2012, 23 (06) :1191-1196
[15]   Combining LiDAR and hyperspectral data for aboveground biomass modeling in the Brazilian Amazon using different regression algorithms [J].
de Almeida, Catherine Torres ;
Galvao, Lenio Soares ;
de Oliveira Cruz e Aragao, Luiz Eduardo ;
Henry Balbaud Ometto, Jean Pierre ;
Jacon, Aline Daniele ;
de Souza Pereira, Francisca Rocha ;
Sato, Luciane Yumie ;
Lopes, Aline Pontes ;
Lima de Alencastro Graca, Paulo Mauricio ;
Silva, Camila Valeria de Jesus ;
Ferreira-Ferreira, Jefferson ;
Longo, Marcos .
REMOTE SENSING OF ENVIRONMENT, 2019, 232
[16]   Modeling and Spatialization of Biomass and Carbon Stock Using LiDAR Metrics in Tropical Dry Forest, Brazil [J].
de Oliveira, Cinthia Pereira ;
Caraciolo Ferreira, Rinaldo Luiz ;
Aleixo da Silva, Jose Antonio ;
de Lima, Robson Borges ;
Silva, Emanuel Araujo ;
da Silva, Anderson Francisco ;
Silva de Lucena, Josias Divino ;
Tavares dos Santos, Nattan Adler ;
Correa Lopes, Iran Jorge ;
de Lima Pessoa, Mayara Maria ;
Souto-Maior Sales de Melo, Cybelle Lais .
FORESTS, 2021, 12 (04) :NA
[17]   Reducing Uncertainty in Mapping of Mangrove Aboveground Biomass Using Airborne Discrete Return Lidar Data [J].
de Souza Pereira, Francisca Rocha ;
Kampel, Milton ;
Gomes Soares, Mario Luiz ;
Duque Estrada, Gustavo Calderucio ;
Bentz, Cristina ;
Vincent, Gregoire .
REMOTE SENSING, 2018, 10 (04)
[18]   Simulating the impact of discrete-return lidar system and survey characteristics over young conifer and broadleaf forests [J].
Disney, M. I. ;
Kalogirou, V. ;
Lewis, P. ;
Prieto-Blanco, A. ;
Hancock, S. ;
Pfeifer, M. .
REMOTE SENSING OF ENVIRONMENT, 2010, 114 (07) :1546-1560
[19]   Monitoring Pasture Aboveground Biomass and Canopy Height in an Integrated Crop-Livestock System Using Textural Information from PlanetScope Imagery [J].
Dos Reis, Aliny A. ;
Werner, Joao P. S. ;
Silva, Bruna C. ;
Figueiredo, Gleyce K. D. A. ;
Antunes, Joao F. G. ;
Esquerdo, Julio C. D. M. ;
Coutinho, Alexandre C. ;
Lamparelli, Rubens A. C. ;
Rocha, Jansle, V ;
Magalhaes, Paulo S. G. .
REMOTE SENSING, 2020, 12 (16)
[20]   Forest biomass carbon sinks in East Asia, with special reference to the relative contributions of forest expansion and forest growth [J].
Fang, Jingyun ;
Guo, Zhaodi ;
Hu, Huifeng ;
Kato, Tomomichi ;
Muraoka, Hiroyuki ;
Son, Yowhan .
GLOBAL CHANGE BIOLOGY, 2014, 20 (06) :2019-2030