A Note for Kohlrausch-Williams-Watts Relaxation Function

被引:26
作者
Kawasaki, Yohji [1 ]
Watanabe, Hiroshi [1 ]
Uneyama, Takashi [1 ]
机构
[1] Kyoto Univ, Inst Chem Res, Kyoto 6110011, Japan
关键词
KWW relaxation function; Framework of linear relaxation phenomena; Average relaxation times; EMPIRICAL DECAY FUNCTION; DIELECTRIC-RELAXATION; BEHAVIOUR;
D O I
10.1678/rheology.39.127
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The Kohlrausch-Williams-Watts (KWW) relaxation function, F-KWW(t) = exp{-(t/tau(KWW))(beta)} with 0 < beta <= 1 has been often utilized to describe relaxation processes in systems governed by cooperativity/coupling of molecules therein. Nevertheless, this function has not been well addressed in the general, phenomenological framework of linear relaxation phenomena, for which the relaxation function is expressed as F(t)= Sigma(p)g(p)exp{-t/tau(p)} with g(p) and tau(p), being the normalized intensity and characteristic time of pth (exponential) relaxation mode. In this study, the KWW function is analyzed to address this function in this general framework and derive analytical expressions of average relaxation times.
引用
收藏
页码:127 / 131
页数:5
相关论文
共 16 条
[1]  
Abramowitz M., 1972, HDB MATH FUNCTIONS
[2]   RELATIONSHIP BETWEEN THE TIME-DOMAIN KOHLRAUSCH-WILLIAMS-WATTS AND FREQUENCY-DOMAIN HAVRILIAK-NEGAMI RELAXATION FUNCTIONS [J].
ALVAREZ, F ;
ALEGRIA, A ;
COLMENERO, J .
PHYSICAL REVIEW B, 1991, 44 (14) :7306-7312
[3]   LINEAR VISCOELASTICITY AT THE GEL POINT OF A CROSS-LINKING PDMS WITH IMBALANCED STOICHIOMETRY [J].
CHAMBON, F ;
WINTER, HH .
JOURNAL OF RHEOLOGY, 1987, 31 (08) :683-697
[4]  
Ferry J. D., 1980, VISCOELASTIC PROPERT, V3rd ed.
[5]  
Graessley W.W., 1974, The Entanglement Concept in Polymer Rheology, VVolume 16
[6]  
Havriliak S, 1966, J Poly Sci C Poly Symp, V14, P99, DOI DOI 10.1002/POLC.5070140111
[7]  
Kremer F., 2002, BROADBAND DIELECTRIC
[8]  
Lang S., 1999, COMPLEX ANAL
[9]  
MCCRUM NG, 1967, ANELASTIC DIELECTRIC
[10]   THE DOUBLE EXPONENTIAL FORMULA FOR OSCILLATORY FUNCTIONS OVER THE HALF INFINITE INTERVAL [J].
OOURA, T ;
MORI, M .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1991, 38 (1-3) :353-360