Periodic pulsating dynamics of slow-fast delayed systems with a period close to the delay

被引:0
作者
Kravetc, P. [1 ]
Rachinskii, D. [1 ]
Vladimirov, A. [2 ,3 ]
机构
[1] Univ Texas Dallas, Dept Math Sci, Richardson, TX 75083 USA
[2] Weierstrass Inst, Mohrenstr 39, D-10117 Berlin, Germany
[3] Lobachevsky State Univ Nizhny Novgorod, Nizhnii Novgorod, Russia
关键词
Population dynamics; bifurcation theory; singular perturbations; functional-differential equations; PREDATOR-PREY MODEL; DIFFERENTIAL EQUATIONS; LASERS; STABILITY; BIFURCATION; INSTABILITY; LOCKING;
D O I
10.1017/S0956792517000377
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider slow-fast delayed systems and discuss pulsating periodic solutions, which are characterised by specific properties that (a) the period of the periodic solution is close to the delay, and (b) these solutions are formed close to a bifurcation threshold. Such solutions were previously found in models of mode-locked lasers. Through a case study of population models, this work demonstrates the existence of similar solutions for a rather wide class of delayed systems. The periodic dynamics originates from the Hopf bifurcation on the positive equilibrium. We show that the continuous transformation of the periodic orbit to the pulsating regime is simultaneous with multiple secondary almost resonant Hopf bifurcations, which the equilibrium undergoes over a short interval of parameter values. We derive asymptotic approximations for the pulsating periodic solution and consider scaling of the solution and its period with the small parameter that measures the ratio of the time scales. The role of competition for the realisation of the bifurcation scenario is highlighted.
引用
收藏
页码:39 / 62
页数:24
相关论文
共 47 条
[1]   Semiconductor mode-locked lasers with coherent dual-mode optical injection: simulations, analysis, and experiment [J].
Arkhipov, R. M. ;
Habruseva, T. ;
Pimenov, A. ;
Radziunas, M. ;
Hegarty, S. P. ;
Huyet, G. ;
Vladimirov, A. G. .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2016, 33 (03) :351-359
[2]   Pulse repetition-frequency multiplication in a coupled cavity passively mode-locked semiconductor lasers [J].
Arkhipov, R. M. ;
Amann, A. ;
Vladimirov, A. G. .
APPLIED PHYSICS B-LASERS AND OPTICS, 2015, 118 (04) :539-548
[3]   Hybrid Mode Locking in Semiconductor Lasers: Simulations, Analysis, and Experiments [J].
Arkhipov, Rostislav ;
Pimenov, Alexander ;
Radziunas, Mindaugas ;
Rachinskii, Dmitrii ;
Vladimirov, Andrei G. ;
Arsenijevic, Dejan ;
Schmeckebier, Holger ;
Bimberg, Dieter .
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2013, 19 (04)
[4]  
Banerjee Sandip, 2010, Journal of Applied Mathematics and Informatics, V28, P1379
[5]   Delayed-mutual coupling dynamics of lasers: Scaling laws and resonances [J].
Carr, T. W. ;
Schwartz, I. B. ;
Kim, Min-Young ;
Roy, Rajarshi .
SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2006, 5 (04) :699-725
[6]   Delay-periodic solutions and their stability using averaging in delay-differential equations, with applications [J].
Carr, T. W. ;
Haberman, R. ;
Erneux, T. .
PHYSICA D-NONLINEAR PHENOMENA, 2012, 241 (18) :1527-1531
[7]   Optical frequency combs from semiconductor lasers and applications in ultrawideband signal processing and communications [J].
Delfyett, Peter J. ;
Gee, Sangyoun ;
Choi, Myoung-Taek ;
Izadpanah, Hossein ;
Lee, Wangkuen ;
Ozharar, Sarper ;
Quinlan, Franklyn ;
Yilmaz, Tolga .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2006, 24 (07) :2701-2719
[8]   MINIMAL EQUATIONS FOR ANTIPHASE DYNAMICS IN MULTIMODE LASERS [J].
ERNEUX, T ;
MANDEL, P .
PHYSICAL REVIEW A, 1995, 52 (05) :4137-4144
[9]  
Erneux T, 2009, Applied Delay differential equations
[10]   Delay stabilization of periodic orbits in coupled oscillator systems [J].
Fiedler, B. ;
Flunkert, V. ;
Hoevel, P. ;
Schoell, E. .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2010, 368 (1911) :319-341