Multisoliton solutions of the (2+1)-dimensional KdV equation

被引:0
|
作者
Zhang, JF [1 ]
Huang, WH
机构
[1] Zhejiang Normal Univ, Inst Nonlinear Phys, Jinhua 321004, Peoples R China
[2] Jiangxi Yichun Coll, Dept Phys, Yichun, Peoples R China
关键词
multisoliton; (2+1)-dimensions; KdV equation;
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Using the extension homogeneous' balance method, we have obtained some new special types of soliton solutions of the (2+1) -dimensional KdV equation. Starting from the homogeneous balance method, one can obtain a nonlinear transformation to simple (2+1) -dimensional KdV equation into a linear partial differential equation and two bilinear partial differential equations. Usually, one can obtain only a kind of soliton-like solutions. In this letter, we Find further some special types of the multisoliton solutions from the linear and bilinear partial differential equations.
引用
收藏
页码:523 / 524
页数:2
相关论文
共 50 条
  • [1] A new multisoliton solution to (2+1)-dimensional KdV equation
    Peng, YZ
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2004, 41 (05) : 669 - 670
  • [2] A New Multisoliton Solution to (2+1)-Dimensional KdV Equation
    PENG Yan-Ze~(1
    Communications in Theoretical Physics, 2004, 41 (05) : 669 - 670
  • [3] Multisoliton solutions of the (2+1)-dimensional Harry Dym equation
    Dmitrieva, L
    Khlabystova, M
    PHYSICS LETTERS A, 1998, 237 (06) : 369 - 380
  • [4] Multisoliton solutions to a nonisospectral (2+1)-dimensional breaking soliton equation
    Yao, Yuqin
    Chen, Dengyuan
    Zhang, Dajun
    PHYSICS LETTERS A, 2008, 372 (12) : 2017 - 2025
  • [5] The Multisoliton Solutions for the (2+1)-Dimensional Sawada-Kotera Equation
    Xu, Zhenhui
    Chen, Hanlin
    Chen, Wei
    ABSTRACT AND APPLIED ANALYSIS, 2013,
  • [6] Generalized dromion solutions of the (2+1)-dimensional KdV equation
    Lou, SY
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1995, 28 (24): : 7227 - 7232
  • [7] Bifurcation and travelling wave solutions for a (2+1)-dimensional KdV equation
    Elmandouha, A. A.
    Ibrahim, A. G.
    JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE, 2020, 14 (01): : 139 - 147
  • [8] Integrability and lump solutions to an extended (2+1)-dimensional KdV equation
    Cheng, Li
    Ma, Wen Xiu
    Zhang, Yi
    Ge, Jian Ya
    EUROPEAN PHYSICAL JOURNAL PLUS, 2022, 137 (08):
  • [9] Integrability and lump solutions to an extended (2+1)-dimensional KdV equation
    Li Cheng
    Wen Xiu Ma
    Yi Zhang
    Jian Ya Ge
    The European Physical Journal Plus, 137
  • [10] A Family of Novel Exact Solutions to (2+1)-Dimensional KdV Equation
    Wang, Zhen
    Zou, Li
    Zong, Zhi
    Qin, Hongde
    ABSTRACT AND APPLIED ANALYSIS, 2014,