Effects of chemical functionalization on electronic transport in carbon nanobuds

被引:7
作者
Havu, P. [1 ]
Sillanpaa, A. [2 ]
Runeberg, N. [2 ]
Tarus, J. [2 ]
Seppala, E. T. [3 ]
Nieminen, R. M. [1 ]
机构
[1] Aalto Univ, Sch Sci & Technol, Dept Appl Phys, FI-00076 Aalto, Finland
[2] CSC IT Ctr Sci, FI-02101 Espoo, Finland
[3] Nokia Res Ctr, FI-00180 Helsinki, Finland
来源
PHYSICAL REVIEW B | 2012年 / 85卷 / 11期
关键词
1ST-PRINCIPLES; DERIVATIVES; NANOTUBES; MOLECULES;
D O I
10.1103/PhysRevB.85.115446
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Carbon nanobuds form a class of hybrid structures consisting of carbon nanotubes onto which fullerene types of units are covalently grown. Due to higher electrophilicity and curvature of the fullerene moiety a carbon nanobud exhibits higher reactivity compared to a plain nanotube. In this paper we study how the electronic structure and transport properties of carbon nanobuds are affected by chemical modification. The studied model systems comprise carbon nanobuds that are chemically modified by attaching Li and F atoms as well as tetrathiafulvalene molecules. We use the density functional theory combined with Landauer-Buttiker electron transport formalism. According to the simulations, the attached units change the relative positions of the Fermi levels, creating a distinctive effect on the electronic transport properties along associated carbon nanotubes. In semiconducting nanotubes the change in the conductance is systematic and should be detectable in experiments. Hence, the carbon nanobuds are potential candidates for sensor applications.
引用
收藏
页数:9
相关论文
共 27 条
[1]   Tetrathiafulvalenes, oligoacenenes, and their buckminsterfullerene derivatives: The brick and mortar of organic electronics [J].
Bendikov, M ;
Wudl, F ;
Perepichka, DF .
CHEMICAL REVIEWS, 2004, 104 (11) :4891-4945
[2]   Ab initio molecular simulations with numeric atom-centered orbitals [J].
Blum, Volker ;
Gehrke, Ralf ;
Hanke, Felix ;
Havu, Paula ;
Havu, Ville ;
Ren, Xinguo ;
Reuter, Karsten ;
Scheffler, Matthias .
COMPUTER PHYSICS COMMUNICATIONS, 2009, 180 (11) :2175-2196
[3]   Covalent and Noncovalent Phthalocyanine-Carbon Nanostructure Systems: Synthesis, Photoinduced Electron Transfer, and Application to Molecular Photovoltaics [J].
Bottari, Giovanni ;
de la Torre, Gema ;
Guldi, Dirk M. ;
Torres, Tomas .
CHEMICAL REVIEWS, 2010, 110 (11) :6768-6816
[4]   4-TERMINAL PHASE-COHERENT CONDUCTANCE [J].
BUTTIKER, M .
PHYSICAL REVIEW LETTERS, 1986, 57 (14) :1761-1764
[5]   Tetrathiafulvalene (TTF) derivatives: key building-blocks for switchable processes [J].
Canevet, David ;
Salle, Marc ;
Zhang, Guanxin ;
Zhang, Deqing ;
Zhu, Daoben .
CHEMICAL COMMUNICATIONS, 2009, (17) :2245-2269
[6]   Donor-acceptor nanohybrids of zinc naphthalocyanine or zinc porphyrin noncovalently linked to single-wall carbon nanotubes for photoinduced electron transfer [J].
Chitta, Raghu ;
Sandanayaka, Atula S. D. ;
Schumacher, Amy L. ;
D'Souza, Lawrence ;
Araki, Yasuyuki ;
Ito, Osamu ;
D'Souza, Francis .
JOURNAL OF PHYSICAL CHEMISTRY C, 2007, 111 (19) :6947-6955
[7]  
Dresselhaus M. S., 1996, SCI FULLERENES CARBO
[8]   Electronic transport properties of fullerene functionalized carbon nanotubes: Ab initio and tight-binding calculations [J].
Fuerst, J. A. ;
Hashemi, J. ;
Markussen, T. ;
Brandbyge, M. ;
Jauho, A. P. ;
Nieminen, R. M. .
PHYSICAL REVIEW B, 2009, 80 (03)
[9]   Electronic Structures and Raman Features of a Carbon Nanobud [J].
He, H. Y. ;
Pan, B. C. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (49) :20822-20826
[10]   BONDED-ATOM FRAGMENTS FOR DESCRIBING MOLECULAR CHARGE-DENSITIES [J].
HIRSHFELD, FL .
THEORETICA CHIMICA ACTA, 1977, 44 (02) :129-138