Synergistic combinations of dielectrics and metallization process technology to achieve 22 nm interconnect performance targets

被引:18
作者
Antonelli, G. A. [1 ]
Jiang, G. [1 ]
Shaviv, R. [1 ]
Mountsier, T. [1 ]
Dixit, G. [1 ]
Park, K. J. [1 ]
Karim, I. [1 ]
Wu, W. [1 ]
Shobha, H. [2 ]
Spooner, T. [2 ]
Soda, E. [3 ]
Liniger, E. [4 ]
Cohen, S. [4 ]
Demarest, J. [2 ]
Tagami, M. [3 ]
Vander Straten, O. [2 ]
Baumann, F. [5 ]
机构
[1] Novellus Syst, San Jose, CA 95134 USA
[2] IBM Corp, Albany, NY 12203 USA
[3] Renesas Elect, Albany, NY 12203 USA
[4] IBM Corp, Thomas J Watson Res Ctr, Yorktown Hts, NY 10598 USA
[5] IBM Microelect, Hopewell Jct, NY 12533 USA
关键词
Interconnects; Ultra-low-k materials; Process integration; PLASMA; DIFFUSION;
D O I
10.1016/j.mee.2011.04.035
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
An improvement in interconnect performance implies a reduction of the resistance-capacitance (RC) time constant. Instead of scaling the capacitance at each technology node through a reduction in the dielectric constant of the interlayer dielectric (ILD), the interconnect aspect ratios could be scaled holding the ILD fixed. In this case, the material properties of the ILD must be robust to process-induced damage and amenable to the creation of high aspect ratio features. In addition, a metallization scheme that can provide void free Cu fill in high aspect ratio features is required. Characterization, patterning, and integration results collected on such an ultra-low-k (ULK) ILD material and void free metallization is presented. A measured reduction in the resistance of a 22 nm node interconnect in this ILD was observed as a function of increasing aspect ratio. The copper seed deposition process, capable of enabling the fill of even higher aspect ratio features, is also discussed. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:9 / 14
页数:6
相关论文
共 18 条
[1]  
Antonelli G, 2010, MATER RES SOC S P
[2]  
Bohr MT, 1995, INTERNATIONAL ELECTRON DEVICES MEETING, 1995 - IEDM TECHNICAL DIGEST, P241, DOI 10.1109/IEDM.1995.499187
[3]  
Chen J.H.-C., 2009, ADV MET C 2008, V2008, P83
[4]   Effect of thin-film imaging on line edge roughness transfer to underlayers during etch processes [J].
Goldfarb, DL ;
Mahorowala, AP ;
Gallatin, GM ;
Petrillo, KE ;
Temple, K ;
Angelopoulos, M ;
Rasgon, S ;
Sawin, HH ;
Allen, SD ;
Lawson, MC ;
Kwong, RW .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2004, 22 (02) :647-653
[5]   Oxygen radical and plasma damage of low-k organosilicate glass materials: Diffusion-controlled mechanism for carbon depletion [J].
Goldman, M. A. ;
Graves, D. B. ;
Antonelli, G. A. ;
Behera, S. P. ;
Kelber, J. A. .
JOURNAL OF APPLIED PHYSICS, 2009, 106 (01)
[6]   Ultralow-k dielectrics prepared by plasma-enhanced chemical vapor deposition [J].
Grill, A ;
Patel, V .
APPLIED PHYSICS LETTERS, 2001, 79 (06) :803-805
[7]   Low dielectric constant materials for microelectronics [J].
Maex, K ;
Baklanov, MR ;
Shamiryan, D ;
Iacopi, F ;
Brongersma, SH ;
Yanovitskaya, ZS .
JOURNAL OF APPLIED PHYSICS, 2003, 93 (11) :8793-8841
[8]   Redeposition of etch products on sidewalls during SiO2 etching in a fluorocarbon plasma.: I.: Effect of particle emission from the bottom surface in a CF4 plasma [J].
Min, JH ;
Hwang, SW ;
Lee, GR ;
Moon, SH .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2002, 20 (05) :1574-1581
[9]   Process integration compatibility of low-k and ultra-low-k dielectrics [J].
Moore, D ;
Carter, R ;
Cui, H ;
Burke, P ;
McGrath, P ;
Gu, SQ ;
Gidley, D ;
Peng, H .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2005, 23 (01) :332-335
[10]   DIRECTIONAL AND PREFERENTIAL SPUTTERING-BASED PHYSICAL VAPOR-DEPOSITION [J].
ROSSNAGEL, SM .
THIN SOLID FILMS, 1995, 263 (01) :1-12