We present a new method for computing high-order accurate approximations of eigenvalues defined in terms of Galerkin approximations. We consider the eigenvalue as a non-linear functional of its corresponding eigenfunction and show how to extend the adjoint-based approach proposed in Cockburn and Wang (2017) [14], to compute it. We illustrate the method on a second-order elliptic eigenvalue problem. Our extensive numerical results show that the approximate eigenvalues computed by our method converge with a rate of 4k + 2 when tensor-product polynomials of degree k are used for the Galerkin approximations. In contrast, eigenvalues obtained by standard finite element methods such as the mixed method or the discontinuous Galerkin method converge with a rate at most of 2k + 2. We present numerical results which show the performance of the method for the classic unit square and L-shaped domains, and for the quantum harmonic oscillator. We also present experiments uncovering a new adjoint-corrected approximation of the eigenvalues provided by the hybridizable discontinuous Galerkin method which converges with order 2k + 2, as well as results showing the possibilities and limitations of using the adjoint-correction term as an asymptotically exact a posteriori error estimate. (C) 2021 Elsevier Inc. All rights reserved.
机构:
Univ Elect Sci & Technol China, Sch Math Sci, Chengdu, Sichuan, Peoples R ChinaUniv Elect Sci & Technol China, Sch Math Sci, Chengdu, Sichuan, Peoples R China
Li, Xiaozhou
Ryan, Jennifer K.
论文数: 0引用数: 0
h-index: 0
机构:
Univ East Anglia, Sch Math, Norwich, Norfolk, England
Heinrich Heine Univ, Math Inst, Dusseldorf, GermanyUniv Elect Sci & Technol China, Sch Math Sci, Chengdu, Sichuan, Peoples R China
Ryan, Jennifer K.
Kirby, Robert M.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Utah, Sch Comp, Salt Lake City, UT USAUniv Elect Sci & Technol China, Sch Math Sci, Chengdu, Sichuan, Peoples R China
Kirby, Robert M.
Vuik, Kees
论文数: 0引用数: 0
h-index: 0
机构:
Delft Univ Technol, Delft Inst Appl Math, NL-2628 CD Delft, NetherlandsUniv Elect Sci & Technol China, Sch Math Sci, Chengdu, Sichuan, Peoples R China
机构:
Univ Elect Sci & Technol China, Sch Math Sci, Chengdu, Sichuan, Peoples R ChinaUniv Elect Sci & Technol China, Sch Math Sci, Chengdu, Sichuan, Peoples R China
Li, Xiaozhou
Ryan, Jennifer K.
论文数: 0引用数: 0
h-index: 0
机构:
Univ East Anglia, Sch Math, Norwich, Norfolk, England
Heinrich Heine Univ, Math Inst, Dusseldorf, GermanyUniv Elect Sci & Technol China, Sch Math Sci, Chengdu, Sichuan, Peoples R China
Ryan, Jennifer K.
Kirby, Robert M.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Utah, Sch Comp, Salt Lake City, UT USAUniv Elect Sci & Technol China, Sch Math Sci, Chengdu, Sichuan, Peoples R China
Kirby, Robert M.
Vuik, Kees
论文数: 0引用数: 0
h-index: 0
机构:
Delft Univ Technol, Delft Inst Appl Math, NL-2628 CD Delft, NetherlandsUniv Elect Sci & Technol China, Sch Math Sci, Chengdu, Sichuan, Peoples R China