Optimized hip-knee-ankle exoskeleton assistance reduces the metabolic cost of walking with worn loads

被引:29
作者
Bryan, Gwendolyn M. [1 ]
Franks, Patrick W. [1 ]
Song, Seungmoon [1 ]
Reyes, Ricardo [1 ]
O'Donovan, Meghan P. [2 ]
Gregorczyk, Karen N. [2 ]
Collins, Steven H. [1 ]
机构
[1] Stanford Univ, Dept Mech Engn, Stanford, CA 94305 USA
[2] US Army Natick Soldier Res, Dev & Engn Ctr, Natick, MA USA
基金
美国国家卫生研究院;
关键词
Exoskeleton; Augmentation; Load-carriage; Human-in-the-loop optimization; ENERGETICS; CARRIAGE; MASS;
D O I
10.1186/s12984-021-00955-8
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Background Load carriage is common in a wide range of professions, but prolonged load carriage is associated with increased fatigue and overuse injuries. Exoskeletons could improve the quality of life of these professionals by reducing metabolic cost to combat fatigue and reducing muscle activity to prevent injuries. Current exoskeletons have reduced the metabolic cost of loaded walking by up to 22% relative to walking in the device with no assistance when assisting one or two joints. Greater metabolic reductions may be possible with optimized assistance of the entire leg. Methods We used human-in the-loop optimization to optimize hip-knee-ankle exoskeleton assistance with no additional load, a light load (15% of body weight), and a heavy load (30% of body weight) for three participants. All loads were applied through a weight vest with an attached waist belt. We measured metabolic cost, exoskeleton assistance, kinematics, and muscle activity. We performed Friedman's tests to analyze trends across worn loads and paired t-tests to determine whether changes from the unassisted conditions to the assisted conditions were significant. Results Exoskeleton assistance reduced the metabolic cost of walking relative to walking in the device without assistance for all tested conditions. Exoskeleton assistance reduced the metabolic cost of walking by 48% with no load (p = 0.05), 41% with the light load (p = 0.01), and 43% with the heavy load (p = 0.04). The smaller metabolic reduction with the light load may be due to insufficient participant training or lack of optimizer convergence. The total applied positive power was similar for all tested conditions, and the positive knee power decreased slightly as load increased. Optimized torque timing parameters were consistent across participants and load conditions while optimized magnitude parameters varied. Conclusions Whole-leg exoskeleton assistance can reduce the metabolic cost of walking while carrying a range of loads. The consistent optimized timing parameters across participants and conditions suggest that metabolic cost reductions are sensitive to torque timing. The variable torque magnitude parameters could imply that torque magnitude should be customized to the individual, or that there is a range of useful torque magnitudes. Future work should test whether applying the load to the exoskeleton rather than the person's torso results in larger benefits.
引用
收藏
页数:13
相关论文
共 38 条
[31]   Design and Validation of a Torque-Controllable Knee Exoskeleton for Sit-to-Stand Assistance [J].
Shepherd, Max K. ;
Rouse, Elliott J. .
IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2017, 22 (04) :1695-1704
[32]   Men and women adopt similar walking mechanics and muscle activation patterns during load carriage [J].
Silder, Amy ;
Delp, Scott L. ;
Besier, Thor .
JOURNAL OF BIOMECHANICS, 2013, 46 (14) :2522-2528
[33]   Optimizing Exoskeleton Assistance for Faster Self-Selected Walking [J].
Song, Seungmoon ;
Collins, Steven H. .
IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2021, 29 :786-795
[34]   EMG PROFILES DURING NORMAL HUMAN WALKING - STRIDE-TO-STRIDE AND INTER-SUBJECT VARIABILITY [J].
WINTER, DA ;
YACK, HJ .
ELECTROENCEPHALOGRAPHY AND CLINICAL NEUROPHYSIOLOGY, 1987, 67 (05) :402-411
[35]  
Winter DA., 1991, WATERLOO BIOMECHANIC
[36]   Improving the energy economy of human running with powered and unpowered ankle exoskeleton assistance [J].
Witte, Kirby A. ;
Fiers, Pieter ;
Sheets, Alison L. ;
Collins, Steven H. .
SCIENCE ROBOTICS, 2020, 5 (40)
[37]   Human-in-the-loop optimization of exoskeleton assistance during walking [J].
Zhang, Juanjuan ;
Fiers, Pieter ;
Witte, Kirby A. ;
Jackson, Rachel W. ;
Poggensee, Katherine L. ;
Atkeson, Christopher G. ;
Collins, Steven H. .
SCIENCE, 2017, 356 (6344) :1280-1283
[38]  
Zhang Juanjuan., 2017, Bioinspired legged locomotion, P347, DOI [10.1016/B978-0-12-803766-9.00007-5, DOI 10.1016/B978-0-12-803766-9.00007-5]