NEW GENERAL DECAY RESULT FOR A FOURTH-ORDER MOORE-GIBSON-THOMPSON EQUATION WITH MEMORY

被引:17
作者
Liu, Wenjun [1 ]
Chen, Zhijing [1 ]
Tu, Zhiyu [1 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Sch Math & Stat, Nanjing 210044, Peoples R China
来源
ELECTRONIC RESEARCH ARCHIVE | 2020年 / 28卷 / 01期
基金
中国国家自然科学基金;
关键词
Well-posedness; general decay; Moore-Gibson-Thompson equation; energy method; VISCOELASTIC WAVE-EQUATION; THERMOELASTICITY; BEHAVIOR; RATES;
D O I
10.3934/era.2020025
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider the fourth-order Moore-GibsonThompson equation with memory recently introduced by (Milan J. Math. 2017, 85: 215-234) that proposed the fourth-order model. We discuss the well-posedness of the solution by using Faedo-Galerkin method. On the other hand, for a class of relaxation functions satisfying g' (t) <= -xi(t)M(g(t)) for M to be increasing and convex function near the origin and (t) to be a non-increasing function, we establish the explicit and general energy decay result, from which we can improve the earlier related results.
引用
收藏
页码:433 / 457
页数:25
相关论文
共 39 条
  • [1] Moore-Gibson-Thompson equation with memory in a history framework: a semigroup approach
    Alves, M. O.
    Caixeta, A. H.
    Jorge Silva, M. A.
    Rodrigues, J. H.
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2018, 69 (04):
  • [2] Arnold V.I., 1989, Mathematical Methods of Classical Mechanics, VSecond
  • [3] Boulanouar F., 2014, ELECT J DIFFERENTIAL, V2014
  • [4] Global attractors for a third order in time nonlinear dynamics
    Caixeta, Arthur H.
    Lasiecka, Irena
    Cavalcanti, Valria N. D.
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 261 (01) : 113 - 147
  • [5] ON LONG TIME BEHAVIOR OF MOORE-GIBSON-THOMPSON EQUATION WITH MOLECULAR RELAXATION
    Caixeta, Arthur Henrique
    Lasiecka, Irena
    Domingos Cavalcanti, Valeria Neves
    [J]. EVOLUTION EQUATIONS AND CONTROL THEORY, 2016, 5 (04): : 661 - 676
  • [6] Cavalcanti MM, 2005, DIFFER INTEGRAL EQU, V18, P583
  • [7] General decay for a nonlinear Bresse system with memory conditions on part of the boundary
    Chen, Kewang
    Liu, Wenjun
    Yu, Jun
    [J]. APPLICABLE ANALYSIS, 2021, 100 (09) : 1949 - 1971
  • [8] Existence and general stabilization of the Timoshenko system of thermo-viscoelasticity of type III with frictional damping and delay terms
    Chen, Miaomiao
    Liu, Wenjun
    Zhou, Weican
    [J]. ADVANCES IN NONLINEAR ANALYSIS, 2018, 7 (04) : 547 - 569
  • [9] Conejero J.A., 2015, APPL MATH INFORM SCI, V9, P2233
  • [10] On a Fourth-Order Equation of Moore-Gibson-Thompson Type
    Dell'Oro, Filippo
    Pata, Vittorino
    [J]. MILAN JOURNAL OF MATHEMATICS, 2017, 85 (02) : 215 - 234