Rheology-Guided Assembly of a Highly Aligned MXene/Cellulose Nanofiber Composite Film for High-Performance Electromagnetic Interference Shielding and Infrared Stealth

被引:69
|
作者
Feng, Shiyi [1 ]
Yi, Ya [1 ]
Chen, Binxia [1 ]
Deng, Pengcheng [1 ]
Zhou, Zehang [1 ]
Lu, Canhui [1 ,2 ]
机构
[1] Sichuan Univ, State Key Lab Polymer Mat Engn, Polymer Res Inst, Chengdu 610065, Peoples R China
[2] Sichuan Univ, Adv Polymer Mat Res Ctr, Chengdu 362700, Shishi, Peoples R China
基金
中国国家自然科学基金;
关键词
MXene/CNF composite; rheology; aligned structure; EMI shielding; IR stealth; MXENE FILMS; MECHANICAL-PROPERTIES; ULTRATHIN; PAPER;
D O I
10.1021/acsami.2c11292
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Delicately aligned structures of two-dimensional (2D) MXene nanosheets have demonstrated positive effects on applications, especially in electromagnetic interference (EMI) shielding and infrared (IR) stealth. However, precise regulation of structural assembly by theory-guided solution processing is still a great challenge. Herein, one-dimensional (1D) cellulose nanofibers (CNFs) with a high aspect ratio are applied as a reinforcing agent and a rheological modifier for MXene/CNF colloids to fabricate aligned MXene-based materials for EMI shielding and IR stealth. Notably, a systematical rheological study of the MXene/CNF colloids is proposed to determine the optimal solution-processing conditions for finely oriented component arrangement requirements and provides in-depth information on the interactions between the components. The delicately regulated orientation structure assembled by shear inducement is convincingly demonstrated through micro-CT and wide-angle X-ray diffraction/small-angle X-ray scattering (WAXD/SAXS), which endows the MXene/CNF film with a significantly enhanced electrical conductivity of 46 685 S m(-1), a tensile strength of 281.7 MPa, and Young's modulus of 14.8 GPa. Furthermore, the highly aligned structure of the ultrathin film possesses a great enhancement in EMI shielding effectiveness (50.2 dB) and IR stealth (0.562 emissivity). These findings provide a fruitful understanding of the optimized fabrication in solution processing of high-performance MXene-based functional composite films and open up a great opportunity for the development of multifunctional stealth materials.
引用
收藏
页码:36060 / 36070
页数:11
相关论文
共 50 条
  • [1] Self-Assembling Ultrathin MXene/Cellulose Nanofiber/MXene Composite Film for High-Performance Electromagnetic Interference Shielding
    Li, Jun
    Xu, Lihui
    Pan, Hong
    Wang, Liming
    Shen, Yong
    NANO, 2023, 18 (07)
  • [2] Lightweight MXene/Cellulose Nanofiber Composite Film for Electromagnetic Interference Shielding
    Zhibo Cui
    Chunlei Gao
    Zhimin Fan
    Jingfeng Wang
    Zhongjun Cheng
    Zhimin Xie
    Yuyan Liu
    Youshan Wang
    Journal of Electronic Materials, 2021, 50 : 2101 - 2110
  • [3] Lightweight MXene/Cellulose Nanofiber Composite Film for Electromagnetic Interference Shielding
    Cui, Zhibo
    Gao, Chunlei
    Fan, Zhimin
    Wang, Jingfeng
    Cheng, Zhongjun
    Xie, Zhimin
    Liu, Yuyan
    Wang, Youshan
    JOURNAL OF ELECTRONIC MATERIALS, 2021, 50 (04) : 2101 - 2110
  • [4] MXene-decorated nanofiber film based on layer-by-layer assembly strategy for high-performance electromagnetic interference shielding
    Wang, Yanting
    Li, Ting-Ting
    Shiu, Bing-Chiuan
    Zhang, Xuefei
    Peng, Hao-Kai
    Lou, Ching-Wen
    Lin, Jia-Horng
    APPLIED SURFACE SCIENCE, 2022, 574
  • [5] A noble composite film of cellulose/polypyrrole/MXene for electromagnetic interference shielding and infrared thermal camouflage
    Chai, Hongbin
    Tie, Jianfei
    Zhong, Yi
    Zhang, Linping
    Feng, Xueling
    Xu, Hong
    Mao, Zhiping
    CELLULOSE, 2024, 31 (10) : 6435 - 6452
  • [6] Robust and Flexible Cellulose Nanofiber/Multiwalled Carbon Nanotube Film for High-Performance Electromagnetic Interference Shielding
    Zhang, Haoruo
    Sun, Xunwen
    Heng, Zhengguang
    Chen, Yang
    Zou, Huawei
    Liang, Mei
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2018, 57 (50) : 17152 - 17160
  • [7] Ag@MXene-cellulose nanofiber composite for electromagnetic interference shielding, sensing, and actuating
    Yang, Kaihuai
    Zeng, Sitong
    Zhou, Peidi
    Ding, Min
    Lin, Junjie
    Hu, Heng
    Guo, Qiaohang
    Weng, Mingcen
    SENSORS AND ACTUATORS A-PHYSICAL, 2024, 380
  • [8] High-performance carbon nanofiber coated cellulose filter paper for electromagnetic interference shielding
    Mondal, Subhadip
    Ganguly, Sayan
    Das, Poushali
    Bhawal, Poushali
    Das, Tushar Kanti
    Nayak, Lalatendu
    Khastgir, Dipak
    Das, Narayan Ch.
    CELLULOSE, 2017, 24 (11) : 5117 - 5131
  • [9] High-performance carbon nanofiber coated cellulose filter paper for electromagnetic interference shielding
    Subhadip Mondal
    Sayan Ganguly
    Poushali Das
    Poushali Bhawal
    Tushar Kanti Das
    Lalatendu Nayak
    Dipak Khastgir
    Narayan Ch. Das
    Cellulose, 2017, 24 : 5117 - 5131
  • [10] Cellulose nanofiber/MXene/FeCo composites with gradient structure for highly absorbed electromagnetic interference shielding
    Ma, Meng
    Tao, Wenting
    Liao, Xianjun
    Chen, Si
    Shi, Yanqin
    He, Huiwen
    Wang, Xu
    CHEMICAL ENGINEERING JOURNAL, 2023, 452