Robust Bayesian synthetic likelihood via a semi-parametric approach

被引:27
作者
An, Ziwen [1 ,3 ]
Nott, David J. [2 ,4 ]
Drovandi, Christopher [1 ,3 ]
机构
[1] Queensland Univ Technol, Sch Math Sci, Brisbane, Australia
[2] Natl Univ Singapore, Dept Stat & Appl Probabil, Singapore, Singapore
[3] Australian Res Council Centre Excellence Math & S, Melbourne, Australia
[4] Natl Univ Singapore, Inst Operat Res & Analyt, Singapore 117602, Singapore
基金
澳大利亚研究理事会;
关键词
Likelihood-free inference; Approximate Bayesian computation (ABC); Copula; Nonparanormal distribution; Kernel density estimation; Robust estimation; HIGH DIMENSIONS; INFERENCE; COMPUTATION; MODEL;
D O I
10.1007/s11222-019-09904-x
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Bayesian synthetic likelihood (BSL) is now a well-established method for performing approximate Bayesian parameter estimation for simulation-based models that do not possess a tractable likelihood function. BSL approximates an intractable likelihood function of a carefully chosen summary statistic at a parameter value with a multivariate normal distribution. The mean and covariance matrix of this normal distribution are estimated from independent simulations of the model. Due to the parametric assumption implicit in BSL, it can be preferred to its nonparametric competitor, approximate Bayesian computation, in certain applications where a high-dimensional summary statistic is of interest. However, despite several successful applications of BSL, its widespread use in scientific fields may be hindered by the strong normality assumption. In this paper, we develop a semi-parametric approach to relax this assumption to an extent and maintain the computational advantages of BSL without any additional tuning. We test our new method, semiBSL, on several challenging examples involving simulated and real data and demonstrate that semiBSL can be significantly more robust than BSL and another approach in the literature.
引用
收藏
页码:543 / 557
页数:15
相关论文
共 36 条
[1]   Accelerating Bayesian Synthetic Likelihood With the Graphical Lasso [J].
An, Ziwen ;
South, Leah F. ;
Nott, David J. ;
Drovandi, Christopher C. .
JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2019, 28 (02) :471-475
[2]   The Largest Inclusions in a Piece of Steel [J].
C.W. Anderson ;
S.G. Coles .
Extremes, 2002, 5 (3) :237-252
[3]   THE PSEUDO-MARGINAL APPROACH FOR EFFICIENT MONTE CARLO COMPUTATIONS [J].
Andrieu, Christophe ;
Roberts, Gareth O. .
ANNALS OF STATISTICS, 2009, 37 (02) :697-725
[4]   Two-scale dispersal estimation for biological invasions via synthetic likelihood [J].
Barbu, Corentin M. ;
Sethuraman, Karthik ;
Billig, Erica M. W. ;
Levy, Michael Z. .
ECOGRAPHY, 2018, 41 (04) :661-672
[5]  
Bedford T, 2002, ANN STAT, V30, P1031
[6]   Non-linear regression models for Approximate Bayesian Computation [J].
Blum, Michael G. B. ;
Francois, Olivier .
STATISTICS AND COMPUTING, 2010, 20 (01) :63-73
[7]   Inference for stereological extremes [J].
Bortot, P. ;
Coles, S. G. ;
Sisson, S. A. .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2007, 102 (477) :84-92
[8]   The Gaussian rank correlation estimator: robustness properties [J].
Boudt, Kris ;
Cornelissen, Jonathan ;
Croux, Christophe .
STATISTICS AND COMPUTING, 2012, 22 (02) :471-483
[9]   METHOD FOR SIMULATING STABLE RANDOM-VARIABLES [J].
CHAMBERS, JM ;
MALLOWS, CL ;
STUCK, BW .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1976, 71 (354) :340-344
[10]   APPROXIMATE BAYESIAN COMPUTATION BY SUBSET SIMULATION [J].
Chiachio, Manuel ;
Beck, James L. ;
Chiachio, Juan ;
Rus, Guillermo .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2014, 36 (03) :A1339-A1358