Global well-posedness and scattering for nonlinear Schrodinger equations with combined nonlinearities in the radial case

被引:34
|
作者
Cheng, Xing [1 ]
Miao, Changxing [2 ]
Zhao, Lifeng [3 ,4 ]
机构
[1] Hohai Univ, Coll Sci, Nanjing 210098, Jiangsu, Peoples R China
[2] Inst Appl Phys & Computat Math, POB 8009, Beijing 100088, Peoples R China
[3] Univ Sci & Technol China, Wu Wen Tsun Key Lab Math, Hefei 230026, Anhui, Peoples R China
[4] Univ Sci & Technol China, Sch Math Sci, Hefei 230026, Anhui, Peoples R China
关键词
Nonlinear Schrodinger equation; Combined nonlinearities; Global wellposedness; Scattering; Blowup; BLOW-UP; CAUCHY-PROBLEM; GROUND-STATE; DIMENSIONS; COMPACTNESS; EXISTENCE;
D O I
10.1016/j.jde.2016.04.031
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the Cauchy problem for the nonlinear Schrodinger equation with combined nonlinearities, one of which is defocusing mass-critical and the other is focusing energy-critical or energy-subcritical. The threshold is given by means of variational argument. We establish the profile decomposition in H-1 (R-d) and then utilize the concentration-compactness method to show the global wellposedness and scattering versus blowup in H-1 (R-d) below the threshold for radial data when d <= 4. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:2881 / 2934
页数:54
相关论文
共 50 条
  • [31] Global well-posedness and scattering for the derivative nonlinear Schrodinger equation with small rough data
    Wang Baoxiang
    Han Lijia
    Huang Chunyan
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2009, 26 (06): : 2253 - 2281
  • [32] Small data well-posedness for derivative nonlinear Schrodinger equations
    Pornnopparath, Donlapark
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2018, 265 (08) : 3792 - 3840
  • [33] WELL-POSEDNESS AND SMOOTHING EFFECT FOR GENERALIZED NONLINEAR SCHRODINGER EQUATIONS
    Bienaime, Pierre-Yves
    Boulkhemair, Abdesslam
    ANALYSIS & PDE, 2018, 11 (05): : 1241 - 1284
  • [34] A refined global well-posedness result for Schrodinger equations with derivative
    Colliander, J
    Keel, M
    Staffilani, G
    Takaoka, H
    Tao, T
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2002, 34 (01) : 64 - 86
  • [35] WELL-POSEDNESS FOR DEGENERATE SCHRODINGER EQUATIONS
    Cicognani, Massimo
    Reissig, Michael
    EVOLUTION EQUATIONS AND CONTROL THEORY, 2014, 3 (01): : 15 - 33
  • [36] GLOBAL WELL-POSEDNESS OF SEMILINEAR HYPERBOLIC EQUATIONS, PARABOLIC EQUATIONS AND SCHRODINGER EQUATIONS
    Xu, Runzhang
    Chen, Yuxuan
    Yang, Yanbing
    Chen, Shaohua
    Shen, Jihong
    Yu, Tao
    Xu, Zhengsheng
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2018,
  • [37] Global well-posedness for the Schrodinger equation coupled to a nonlinear oscillator
    Komech, A. I.
    Komech, A. A.
    RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS, 2007, 14 (02) : 164 - 173
  • [38] Global Well-Posedness and Instability of an Inhomogeneous Nonlinear Schrodinger Equation
    Saanouni, T.
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2015, 12 (02) : 387 - 417
  • [39] On the well-posedness for the nonlinear radial Schrodinger equation with spatial variable coefficients
    Zheng, Bo-wen
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2019, 182 : 1 - 19
  • [40] WELL-POSEDNESS AND SCATTERING FOR FOURTH ORDER NONLINEAR SCHRODINGER TYPE EQUATIONS AT THE SCALING CRITICAL REGULARITY
    Hirayama, Hiroyuki
    Okamoto, Mamoru
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2016, 15 (03) : 831 - 851