We consider the Cauchy problem for the nonlinear Schrodinger equation with combined nonlinearities, one of which is defocusing mass-critical and the other is focusing energy-critical or energy-subcritical. The threshold is given by means of variational argument. We establish the profile decomposition in H-1 (R-d) and then utilize the concentration-compactness method to show the global wellposedness and scattering versus blowup in H-1 (R-d) below the threshold for radial data when d <= 4. (C) 2016 Elsevier Inc. All rights reserved.
机构:
Univ Calif Los Angeles, Dept Math, 520 Portola Plaza, Los Angeles, CA 90095 USAUniv Calif Los Angeles, Dept Math, 520 Portola Plaza, Los Angeles, CA 90095 USA
机构:
Chonnam Natl Univ, Dept Math, Jeonju 561756, South Korea
Chonnam Natl Univ, Inst Pure & Appl Math, Jeonju 561756, South KoreaChonnam Natl Univ, Dept Math, Jeonju 561756, South Korea
Cho, Yonggeun
Hwang, Gyeongha
论文数: 0引用数: 0
h-index: 0
机构:
Seoul Natl Univ, Dept Math Sci, Seoul 151747, South KoreaChonnam Natl Univ, Dept Math, Jeonju 561756, South Korea
Hwang, Gyeongha
Ozawa, Tohru
论文数: 0引用数: 0
h-index: 0
机构:
Waseda Univ, Dept Appl Phys, Tokyo 1698555, JapanChonnam Natl Univ, Dept Math, Jeonju 561756, South Korea