Real Time Leak Detection System Applied to Oil Pipelines Using Sonic Technology and Neural Networks

被引:14
作者
Avelino, Alvaro M. [1 ]
de Paiva, Jose A. [2 ]
da Silva, Rodrigo E. F. [1 ]
de Araujo, Gabriell J. M. [1 ]
de Azevedo, Fabiano M. [1 ]
Quintaes, Filipe de O. [1 ]
Maitelli, Andre L. [1 ]
Neto, Adriao D. D. [1 ]
Salazar, Andres O. [1 ]
机构
[1] Univ Fed Rio Grande do Norte, Dept Comp Eng & Automat, BR-59072970 Natal, RN, Brazil
[2] Fed Inst Sci & Technol, Dept Informat Technol, Natal, RN, Brazil
来源
IECON: 2009 35TH ANNUAL CONFERENCE OF IEEE INDUSTRIAL ELECTRONICS, VOLS 1-6 | 2009年
关键词
D O I
10.1109/IECON.2009.5415324
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This work proposes a leak detection system using sonic technology, wavelet transform and neural networks to decompose and analyze pressure signals from oil pipelines in real time. The similarity between pressure and sound signals makes it possible to treat the first through digital filtering and wavelet decomposition together with a neural network to characterize and classify leak profiles. The leak detection system logic is embedded on 32 bit/150 MHz floating point DSPs. This system uses piezoresistive sensors, converters to the communication interface (Ethernet) and GPS devices, which are responsible for synchronizing reports and leak alarms. The DSPs code was written using ANSI C language.
引用
收藏
页码:1984 / +
页数:3
相关论文
共 12 条
[1]   Leak detection in liquefied gas pipelines by artificial neural networks [J].
Belsito, S ;
Lombardi, P ;
Andreussi, P ;
Banerjee, S .
AICHE JOURNAL, 1998, 44 (12) :2675-2688
[2]  
DIGITAL S, 2007, EZDSP F28335 TECHNIC
[3]  
DUARTE VJL, 2006, RIO OIL GAS C RIO DE
[4]  
GONZALES R, 1992, PROCESSAMENTO IMAGEN
[5]  
Haykin S., 1998, NEURAL NETWORKS COMP
[6]  
Kuo SenM., 2006, Real-Time Digital Signal Processing: Implementations and Applications
[7]  
MALLAT SG, 1999, IEEE T PATTERN ANAL, V2
[8]  
MARTINS RS, 2008, CONTROLE INSTRUMENTA, P56
[9]  
MOSZKOWICZ VN, 2002, B TECNICO PETROBRAS, V45, P160
[10]   Leakage detection using fiber optics distributed temperature monitoring [J].
Nikles, M ;
Vogel, B ;
Briffod, F ;
Grosswig, S ;
Sauser, F ;
Luebbecke, S ;
Bals, A ;
Pfeiffer, T .
SMART STRUCTURES AND MATERIALS 2004: SMART SENSOR TECHNOLOGY AND MEASUREMENT SYSTEMS, 2004, 5384 :18-25