Pseudomodes for non-self-adjoint Dirac operators

被引:4
作者
Krejcirik, David [1 ]
Duc, Tho Nguyen [1 ]
机构
[1] Czech Tech Univ, Fac Nucl Sci & Phys Engn, Dept Math, Trojanova 13, Prague 12000 2, Czech Republic
关键词
Pseudospectrum; Dirac operators; Non-self-adjoint electromagnetic; potentials; WKB; SCHRODINGER-OPERATORS; PSEUDOSPECTRA; EIGENVALUES;
D O I
10.1016/j.jfa.2022.109440
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Depending on the behaviour of the complex-valued electromagnetic potential in the neighbourhood of infinity, pseudo modes of one-dimensional Dirac operators corresponding to large pseudoeigenvalues are constructed. This is a first systematic approach which goes beyond the standard semi-classical setting. Furthermore, this approach results in substantial progress in achieving optimal conditions and conclusions as well as in covering a wide class of previously inaccessible potentials, including superexponential ones.(c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页数:53
相关论文
共 30 条
[11]   Eigenvalue Estimates for Non-Selfadjoint Dirac Operators on the Real Line [J].
Cuenin, Jean-Claude ;
Laptev, Ari ;
Tretter, Christiane .
ANNALES HENRI POINCARE, 2014, 15 (04) :707-736
[12]   Localization of eigenvalues for non-self-adjoint Dirac and Klein-Gordon operators [J].
D'Ancona, P. ;
Fanelli, L. ;
Krejcirik, D. ;
Schiavone, N. M. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2022, 214
[13]   Semi-classical states for non-self-adjoint Schrodinger operators [J].
Davies, EB .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1999, 200 (01) :35-41
[14]   Pseudospectra of semiclassical (pseudo-) differential operators [J].
Dencker, N ;
Sjöstrand, J ;
Zworski, M .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2004, 57 (03) :384-415
[15]  
Dimassi M, 1999, LONDON MATH SOC LECT
[16]  
Embree M., 2005, The behavior of nonnormal matrices and operators
[17]   Resolvent estimates and bounds on eigenvalues for Dirac operators on the half-line [J].
Enblom, Alexandra .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2018, 51 (16)
[18]   Location of eigenvalues of three-dimensional non-self-adjoint Dirac operators [J].
Fanelli, Luca ;
Krejcirik, David .
LETTERS IN MATHEMATICAL PHYSICS, 2019, 109 (07) :1473-1485
[19]   Magnetic WKB constructions on surfaces [J].
Guedes Bonthonneau, Yannick ;
Nguyen Duc, Tho ;
Raymond, Nicolas ;
Vu Ngoc, San .
REVIEWS IN MATHEMATICAL PHYSICS, 2021, 33 (07)
[20]   Pseudospectra of the Schrodinger operator with a discontinuous complex potential [J].
Henry, Raphael ;
Krejcirik, David .
JOURNAL OF SPECTRAL THEORY, 2017, 7 (03) :659-697