Equivariant group cohomology and Brauer group

被引:4
作者
Cegarra, AM [1 ]
Garzón, AR [1 ]
机构
[1] Univ Granada, Fac Ciencias, Dept Algebra, E-18071 Granada, Spain
关键词
group cohomology; Brauer group; Azumaya algebra; Galois extension; group of operators;
D O I
10.36045/bbms/1063372349
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we prove that, for any Galois finite field extension T/K on which a separated group of operators T is acting, there is an isomorphism between the group of equivariant isomorphism classes of finite dimensional central simple K-algebras endowed with a T-action and containing F as an equivariant strictly maximal subfield and the second equivariant cohomology group of the Galois group of the extension.
引用
收藏
页码:451 / 459
页数:9
相关论文
共 9 条
[1]  
Auslander M., 1960, Trans. Amer. Math. Soc, V97, P367, DOI [DOI 10.1090/S0002-9947-1960-0121392-6, DOI 10.2307/1993378]
[2]  
BASS H, 1968, ALGEBRAIC K THEORY, V40, DOI UNSP MR402736
[3]  
CAENEPEEL S, 1988, MONOGRAPHS TXB PURE, V121, DOI UNSP MR90C13002
[4]  
Cegarra A. M., 2002, HOMOLOGY HOMOTOPY AP, V4, P1
[5]   On graded categorical groups and equivariant group extensions [J].
Cegarra, AM ;
García-Calcines, JM ;
Ortega, JA .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2002, 54 (05) :970-997
[6]   GROUP-GRADED RINGS AND MODULES [J].
DADE, EC .
MATHEMATISCHE ZEITSCHRIFT, 1980, 174 (03) :241-262
[7]  
HATTORI A, 1978, SCI PAP COLL GEN ED, V28, P1
[8]  
Kanzaki T., 1968, OSAKA J MATH, V5, P175
[9]  
Whitehead JHC., 1950, Q J MATH OXFORD, V1, P219, DOI DOI 10.1093/QMATH/1.1.219