Significances of interphase conductivity and tunneling resistance on the conductivity of carbon nanotubes nanocomposites

被引:85
作者
Zare, Yasser [1 ]
Rhee, Kyong Y. [1 ]
机构
[1] Kyung Hee Univ, Coll Engn, Dept Mech Engn, Yongin 449701, Gyeonggi, South Korea
关键词
carbon nanotubes (CNT); conductivity; interphase; polymer nanocomposites; tunneling effect; ELECTRICAL-CONDUCTIVITY; POLYMER NANOCOMPOSITES; MECHANICAL PERCOLATION; MODEL; BEHAVIOR; COMPOSITES; MODULUS; CNT; THRESHOLD; NETWORKS;
D O I
10.1002/pc.25405
中图分类号
TB33 [复合材料];
学科分类号
摘要
This article expresses a simple model for prediction of conductivity in polymer carbon nanotubes (CNT) nanocomposites (PCNT). This model suggests the roles of CNT concentration, CNT dimensions, CNT conductivity, the percentage of networked CNT, interphase thickness and tunneling properties in the conductivity of PCNT. The suggested model is applied to predict the conductivity in several samples. In addition, the significances of all parameters attributed to CNT, interphase and tunneling regions on the predicted conductivity are justified to confirm the suggested model. The calculations of conductivity properly agree with the experimental results demonstrating the capability of suggested model for prediction of conductivity. Thick interphase increases the conductivity of nanocomposites, because it enlarges the conductive networks. In addition, high tunneling resistivity due to polymer layer, large tunneling distance between adjacent CNT and small tunneling diameter deteriorate the conductivity, because they enhance the tunneling resistance limiting the charge transferring via tunneling regions. The suggested model can replace the available models to predict the conductivity in future researches.
引用
收藏
页码:748 / 756
页数:9
相关论文
共 40 条
[1]   Modeling the Interphase Region in Carbon Nanotube-Reinforced Polymer Nanocomposites [J].
Amraei, Jafar ;
Jam, Jafar E. ;
Arab, Behrouz ;
Firouz-Abadi, Roohollah D. .
POLYMER COMPOSITES, 2019, 40 (S2) :E1219-E1234
[2]   Percolation and tunneling in composite materials [J].
Balberg, I ;
Azulay, D ;
Toker, D ;
Millo, O .
INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2004, 18 (15) :2091-2121
[3]   Pseudo-percolation: Critical volume fractions and mechanical percolation in polymer nanocomposites [J].
Baxter, Sarah C. ;
Robinson, Christopher T. .
COMPOSITES SCIENCE AND TECHNOLOGY, 2011, 71 (10) :1273-1279
[4]   Thermoresistive mechanisms of carbon nanotube/polymer composites [J].
Cen-Puc, M. ;
Oliva-Aviles, A. I. ;
Aviles, F. .
PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2018, 95 :41-50
[5]   Free Vibration of Size and Temperature-Dependent Carbon Nanotube (CNT)-Reinforced Composite Nanoplates With CNT Agglomeration [J].
Daghigh, Hamid ;
Daghigh, Vahid .
POLYMER COMPOSITES, 2019, 40 (S2) :E1479-E1494
[6]   An analytical model of effective electrical conductivity of carbon nanotube composites [J].
Deng, Fei ;
Zheng, Quan-Shui .
APPLIED PHYSICS LETTERS, 2008, 92 (07)
[7]   Estimation of interphase thickness and properties in PP/layered silicate nanocomposites [J].
Dominkovics, Zita ;
Hari, Jozsef ;
Kovacs, Janos ;
Fekete, Erika ;
Pukanszky, Bela .
EUROPEAN POLYMER JOURNAL, 2011, 47 (09) :1765-1774
[8]   Nanotube networks in polymer nanocomposites: Rheology and electrical conductivity [J].
Du, FM ;
Scogna, RC ;
Zhou, W ;
Brand, S ;
Fischer, JE ;
Winey, KI .
MACROMOLECULES, 2004, 37 (24) :9048-9055
[9]   Preparation of Furfuryl Alcohol-Functionalized Carbon Nanotube and Epoxidized Novolac Resin Composites with High Char Yield [J].
Ebrahimi, Hamidreza ;
Roghani-Mamaqani, Hossein ;
Salami-Kalajahi, Mehdi ;
Shahi, Sina ;
Abdollahi, Amin .
POLYMER COMPOSITES, 2018, 39 :E1231-E1236
[10]   Mechanical percolation in cellulose whisker nanocomposites [J].
Favier, V ;
Canova, GR ;
Shrivastava, SC ;
Cavaille, JY .
POLYMER ENGINEERING AND SCIENCE, 1997, 37 (10) :1732-1739