New iterative perturbation scheme for lattice models with arbitrary filling

被引:233
作者
Kajueter, H
Kotliar, G
机构
[1] Department of Physics, Rutgers University, Piscataway, NJ
关键词
D O I
10.1103/PhysRevLett.77.131
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We derive a new perturbation scheme for treating the large d limit of lattice models at arbitrary filling. The results are compared with exact diagonalization data for the Hubbard model and found to be in good agreement.
引用
收藏
页码:131 / 134
页数:4
相关论文
共 28 条
[1]   THEORY OF CHEMISORPTION [J].
BRENIG, W ;
SCHONHAMMER, K .
ZEITSCHRIFT FUR PHYSIK, 1974, 267 (03) :201-208
[2]   EXACT DIAGONALIZATION APPROACH TO CORRELATED FERMIONS IN INFINITE DIMENSIONS - MOTT TRANSITION AND SUPERCONDUCTIVITY [J].
CAFFAREL, M ;
KRAUTH, W .
PHYSICAL REVIEW LETTERS, 1994, 72 (10) :1545-1548
[3]   THE BREAKDOWN OF FERMI-LIQUID THEORY IN THE HUBBARD-MODEL [J].
EDWARDS, DM ;
HERTZ, JA .
PHYSICA B, 1990, 163 (1-3) :527-529
[4]  
FISHER D, 1995, PHYS REV B, V52, P1712
[5]   PHYSICAL-PROPERTIES OF THE HALF-FILLED HUBBARD-MODEL IN INFINITE DIMENSIONS [J].
GEORGES, A ;
KRAUTH, W .
PHYSICAL REVIEW B, 1993, 48 (10) :7167-7182
[6]   NUMERICAL-SOLUTION OF THE D=INFINITY HUBBARD-MODEL - EVIDENCE FOR A MOTT TRANSITION [J].
GEORGES, A ;
KRAUTH, W .
PHYSICAL REVIEW LETTERS, 1992, 69 (08) :1240-1243
[7]   HUBBARD-MODEL IN INFINITE DIMENSIONS [J].
GEORGES, A ;
KOTLIAR, G .
PHYSICAL REVIEW B, 1992, 45 (12) :6479-6483
[8]   ERROR BOUNDS IN EQUILIBRIUM STATISTICAL MECHANICS [J].
GORDON, RG .
JOURNAL OF MATHEMATICAL PHYSICS, 1968, 9 (05) :655-&
[9]   HUBBARD-MODEL IN INFINITE DIMENSIONS - A QUANTUM MONTE-CARLO STUDY [J].
JARRELL, M .
PHYSICAL REVIEW LETTERS, 1992, 69 (01) :168-171
[10]   MAGNETIC AND DYNAMIC PROPERTIES OF THE HUBBARD-MODEL IN INFINITE DIMENSIONS [J].
JARRELL, M ;
PRUSCHKE, T .
ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1993, 90 (02) :187-194