EVENTUAL SHADOWING FOR CHAIN TRANSITIVE SETS OF C1 GENERIC DYNAMICAL SYSTEMS

被引:2
作者
Lee, Manseob [1 ]
机构
[1] Mokwon Univ, Dept Mkt Big Data & Math, Daejeon 35349, South Korea
关键词
Shadowing; eventual shadowing; chain transitive; locally maximal; generic; hyperbolic; PERIODIC-ORBITS; SPECIFICATION; STABILITY; PROPERTY; ROBUST; DIFFEOMORPHISMS; COMPONENTS;
D O I
10.4134/JKMS.j190083
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that given any chain transitive set of a C-1 generic diffeomorphism f, if a diffeomorphism f has the eventual shadowing property on the locally maximal chain transitive set, then it is hyperbolic. Moreover, given any chain transitive set of a C-1 generic vector field X, if a vector field X has the eventual shadowing property on the locally maximal chain transitive set, then the chain transitive set does not contain a singular point and it is hyperbolic. We apply our results to conservative systems (volume-preserving diffeomorphisms and divergence-free vector fields).
引用
收藏
页码:1059 / 1079
页数:21
相关论文
共 61 条
  • [1] Global dominated splittings and the C1 Newhouse phenomenon
    Abdenur, F
    Bonatti, C
    Crovisier, S
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 134 (08) : 2229 - 2237
  • [2] Abdenur F, 2007, DISCRETE CONT DYN-A, V17, P223
  • [3] Homoclinic classes with shadowing
    Ahn, Jiweon
    Lee, Keonhee
    Lee, Manseob
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2012,
  • [4] [Anonymous], 1964, CONTRIB DIFFER EQU
  • [5] [Anonymous], 2013, INT J MATH ANAL, V7, P2379, DOI [10.12988/ijma.2013.37187, DOI 10.12988/IJMA.2013.37187]
  • [6] Aoki N., 1994, N HOLLAND MATH LIB, V52
  • [7] Aoki N, 1992, BOL SOC BRAS MAT, V23, P21, DOI DOI 10.1007/BF02584810
  • [8] Hyperbolicity in the volume-preserving scenario
    Arbieto, Alexander
    Catalan, Thiago
    [J]. ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2013, 33 : 1644 - 1666
  • [9] The specification property for flows from the robust and generic viewpoint
    Arbieto, Alexander
    Senos, Laura
    Sodero, Tatiana
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 253 (06) : 1893 - 1909
  • [10] Periodic orbits and expansiveness
    Arbieto, Alexander
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2011, 269 (3-4) : 801 - 807