EVENTUAL SHADOWING FOR CHAIN TRANSITIVE SETS OF C1 GENERIC DYNAMICAL SYSTEMS

被引:2
作者
Lee, Manseob [1 ]
机构
[1] Mokwon Univ, Dept Mkt Big Data & Math, Daejeon 35349, South Korea
关键词
Shadowing; eventual shadowing; chain transitive; locally maximal; generic; hyperbolic; PERIODIC-ORBITS; SPECIFICATION; STABILITY; PROPERTY; ROBUST; DIFFEOMORPHISMS; COMPONENTS;
D O I
10.4134/JKMS.j190083
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that given any chain transitive set of a C-1 generic diffeomorphism f, if a diffeomorphism f has the eventual shadowing property on the locally maximal chain transitive set, then it is hyperbolic. Moreover, given any chain transitive set of a C-1 generic vector field X, if a vector field X has the eventual shadowing property on the locally maximal chain transitive set, then the chain transitive set does not contain a singular point and it is hyperbolic. We apply our results to conservative systems (volume-preserving diffeomorphisms and divergence-free vector fields).
引用
收藏
页码:1059 / 1079
页数:21
相关论文
共 61 条
[1]   Global dominated splittings and the C1 Newhouse phenomenon [J].
Abdenur, F ;
Bonatti, C ;
Crovisier, S .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 134 (08) :2229-2237
[2]  
Abdenur F, 2007, DISCRETE CONT DYN-A, V17, P223
[3]   Homoclinic classes with shadowing [J].
Ahn, Jiweon ;
Lee, Keonhee ;
Lee, Manseob .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2012,
[4]  
[Anonymous], 2013, INT J MATH ANAL, V7, P2379, DOI [10.12988/ijma.2013.37187, DOI 10.12988/IJMA.2013.37187]
[5]  
AoKI N., 1992, Bol. Soc. Brasil. Mat. (N.S.), V23, P21
[6]   Hyperbolicity in the volume-preserving scenario [J].
Arbieto, Alexander ;
Catalan, Thiago .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2013, 33 :1644-1666
[7]   The specification property for flows from the robust and generic viewpoint [J].
Arbieto, Alexander ;
Senos, Laura ;
Sodero, Tatiana .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 253 (06) :1893-1909
[8]   Periodic orbits and expansiveness [J].
Arbieto, Alexander .
MATHEMATISCHE ZEITSCHRIFT, 2011, 269 (3-4) :801-807
[9]   A generic incompressible flow is topological mixing [J].
Bessa, Mario .
COMPTES RENDUS MATHEMATIQUE, 2008, 346 (21-22) :1169-1174
[10]   SHADOWING, EXPANSIVENESS AND SPECIFICATION FOR C1-CONSERVATIVE SYSTEMS [J].
Bessa, Mario ;
Lee, Manseob ;
Wen, Xiao .
ACTA MATHEMATICA SCIENTIA, 2015, 35 (03) :583-600