2D dual-tree complex biorthogonal M-band wavelet transform

被引:0
作者
Chaux, Caroline [1 ]
Pesquet, Jean-Christophe [1 ]
Duval, Laurent [2 ]
机构
[1] Univ Marne La Vallee, Inst Gaspard Monge, F-77454 Marne La Vallee, France
[2] IFP, Inst Francais Petr, Technol Comp Sci & Appl Math Div, F-92500 Malmaison, France
来源
2007 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL III, PTS 1-3, PROCEEDINGS | 2007年
关键词
wavelet transforms; Hilbert transforms; image analysis; image processing; Gaussian noise; BASES; PAIRS;
D O I
暂无
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Dual-tree wavelet transforms have recently gained popularity [1] since they provide low-redundancy directional analyses of images. In our recent work, dyadic real dual-tree decompositions have been extended to the M-band case, so adding much flexibility to this analysis tool. In this work, we propose to further extend this framework on two fronts by considering (i) biorthogonal and (ii) complex M-band dual-tree decompositions. Denoising results are finally provided to demonstrate the validity of the proposed design rules.
引用
收藏
页码:845 / +
页数:2
相关论文
共 9 条
[1]  
Candes E., 1999, CURVES SURFACE FITTI, P105
[2]   Image analysis using a dual-tree M-band wavelet transform [J].
Chaux, Caroline ;
Duval, Laurent ;
Pesquet, Jean-Christophe .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2006, 15 (08) :2397-2412
[3]   The contourlet transform: An efficient directional multiresolution image representation [J].
Do, MN ;
Vetterli, M .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2005, 14 (12) :2091-2106
[4]  
KINGSBURY NG, 1998, P IEEE DIGITAL SIGNA
[5]   Sparse geometric image representations with bandelets [J].
Le Pennec, E ;
Mallat, S .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2005, 14 (04) :423-438
[6]   The dual-tree complex wavelet transform [J].
Selesnick, IW ;
Baraniuk, RG ;
Kingsbury, NG .
IEEE SIGNAL PROCESSING MAGAZINE, 2005, 22 (06) :123-151
[7]   Hilbert transform pairs of wavelet bases [J].
Selesnick, IW .
IEEE SIGNAL PROCESSING LETTERS, 2001, 8 (06) :170-173
[8]   Bivariate shrinkage with local variance estimation [J].
Sendur, L ;
Selesnick, IW .
IEEE SIGNAL PROCESSING LETTERS, 2002, 9 (12) :438-441
[9]   Hilbert transform pairs of biorthogonal wavelet bases [J].
Yu, Runyi ;
Ozkaramanli, Huseyin .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2006, 54 (06) :2119-2125