Decay of a Bose-Einstein condensate in a dissipative lattice - the mean-field approximation and beyond

被引:34
作者
Trimborn, F. [1 ]
Witthaut, D. [2 ,3 ]
Hennig, H. [2 ]
Kordas, G. [4 ]
Geisel, T. [2 ]
Wimberger, S. [4 ]
机构
[1] Leibniz Univ Hannover, Inst Theoret Phys, D-30167 Hannover, Germany
[2] Max Planck Inst Dynam & Self Org, D-37073 Gottingen, Germany
[3] Univ Copenhagen, Niels Bohr Inst, QUANTOP, DK-2100 Copenhagen, Denmark
[4] Univ Heidelberg, Inst Theoret Phys, D-69120 Heidelberg, Germany
关键词
OPEN QUANTUM SYSTEM; STOCHASTIC RESONANCE; OPTICAL LATTICES; MOTT INSULATOR; ATOMS; COLD; GAS; BREATHERS; SOLITONS; DRIVEN;
D O I
10.1140/epjd/e2011-10702-7
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The dynamical evolution of a Bose-Einstein condensate in an open optical lattice is studied. Based on the Bose-Hubbard model we rederive the mean-field limit for the case of an environmental coupling including dissipation and phase-noise. Moreover, we include the next order correlation functions to investigate the dynamical behavior beyond mean field. We observe that particle loss can lead to surprising dynamics, as it can suppress decay and at the same time restore the coherence of the condensate. These behavior can be used to engineer the evolution, e.g. in the form of a stochastic resonance-like response, to inhibit tunneling or to create stable nonlinear structures of the condensate.
引用
收藏
页码:63 / 71
页数:9
相关论文
共 50 条
  • [41] Vortices near the Mott phase of a trapped Bose-Einstein condensate
    Goldbaum, Daniel S.
    Mueller, Erich J.
    [J]. PHYSICAL REVIEW A, 2009, 79 (02)
  • [42] Polaritonic Solitons in a Bose-Einstein Condensate Trapped in a Soft Optical Lattice
    Dong, Guangjiong
    Zhu, Jiang
    Zhang, Weiping
    Malomed, Boris A.
    [J]. PHYSICAL REVIEW LETTERS, 2013, 110 (25)
  • [43] Quantum and classical dynamics of a Bose-Einstein condensate in a large-period optical lattice
    Huckans, J. H.
    Spielman, I. B.
    Tolra, B. Laburthe
    Phillips, W. D.
    Porto, J. V.
    [J]. PHYSICAL REVIEW A, 2009, 80 (04):
  • [44] Entropy of a Turbulent Bose-Einstein Condensate
    Madeira, Lucas
    Garcia-Orozco, Arnol Daniel
    dos Santos, Francisco Ednilson Alves
    Bagnato, Vanderlei Salvador
    [J]. ENTROPY, 2020, 22 (09)
  • [45] Rydberg Electrons in a Bose-Einstein Condensate
    Wang, Jia
    Gacesa, Marko
    Cote, R.
    [J]. PHYSICAL REVIEW LETTERS, 2015, 114 (24)
  • [46] Transition to a Magnon Bose-Einstein Condensate
    Petrov, P. E.
    Knyazev, G. A.
    Kuzmichev, A. N.
    Vetoshko, P. M.
    Belotelov, V. I.
    Bunkov, Yu. M.
    [J]. JETP LETTERS, 2024, 119 (02) : 118 - 122
  • [47] Geometrical Pumping with a Bose-Einstein Condensate
    Lu, H. -, I
    Schemmer, M.
    Aycock, L. M.
    Genkina, D.
    Sugawa, S.
    Spielman, I. B.
    [J]. PHYSICAL REVIEW LETTERS, 2016, 116 (20)
  • [48] Variance of an anisotropic Bose-Einstein condensate
    Klaiman, Shachar
    Beinke, Raphael
    Cederbaum, Lorenz S.
    Streltsov, Alexej I.
    Alon, Ofir E.
    [J]. CHEMICAL PHYSICS, 2018, 509 : 45 - 54
  • [49] Turbulence in a trapped Bose-Einstein condensate
    Seman, J. A.
    Shiozaki, R. F.
    Poveda-Cuevas, F. J.
    Henn, E. A. L.
    Magalhaes, K. M. F.
    Roati, G.
    Telles, G. D.
    Bagnato, V. S.
    [J]. 22ND INTERNATIONAL CONFERENCE ON ATOMIC PHYSICS, 2011, 264
  • [50] Rydberg excitation of a Bose-Einstein condensate
    Viteau, M.
    Bason, M.
    Radogostowicz, J.
    Malossi, N.
    Morsch, O.
    Ciampini, D.
    Arimondo, E.
    [J]. LASER PHYSICS, 2013, 23 (01)