共 32 条
Accelerated Degradation Analysis for the Quality of a System Based on the Gamma Process
被引:99
作者:
Ling, Man Ho
[1
]
Tsui, Kwok Leung
[2
]
Balakrishnan, Narayanaswamy
[3
]
机构:
[1] Hong Kong Inst Educ, Dept Math & Informat Technol, Tai Po, Hong Kong, Peoples R China
[2] City Univ Hong Kong, Dept Syst Engn & Engn Management, Ind Engn, Kowloon, Hong Kong, Peoples R China
[3] McMaster Univ, Dept Math & Stat, Hamilton, ON L8S 4K1, Canada
关键词:
Accelerated degradation analysis;
asymptotic confidence interval;
gamma process;
maximum likelihood estimate;
remaining useful life;
system health;
EXPONENTIAL-DISTRIBUTION;
LIFE DISTRIBUTIONS;
STRESS MODEL;
FAILURE;
INFERENCE;
TESTS;
D O I:
10.1109/TR.2014.2337071
中图分类号:
TP3 [计算技术、计算机技术];
学科分类号:
0812 ;
摘要:
As most systems these days are highly reliable with long lifetimes, failures of systems become rare; consequently, traditional failure time analysis may not be able to provide a precise assessment of the system reliability. In this regard, a degradation measure, as a percentage of the initial value, is an alternate way of describing the system health. This paper presents accelerated degradation analysis that characterizes the health and quality of systems with monotonic and bounded degradation. The maximum likelihood estimates (MLEs) of the model parameters are derived, based on a gamma process, time-scale transformation, and a power link function for associating the covariates. Then, methods of estimating the reliability, the mean and median lifetime, the conditional reliability, and the remaining useful life of systems under normal use conditions are all described. Moreover, approximate confidence intervals for the parameters of interest are developed based on the observed Fisher information matrix. A model validation metric with exact power is introduced. A Monte Carlo simulation study is carried out for evaluating the performance of the proposed methods. For an illustration of the proposed model, and the methods of inference developed here, a numerical example involving light intensity of light emitting diodes (LED) is analyzed.
引用
收藏
页码:463 / 472
页数:10
相关论文