WELL-BALANCED POSITIVITY PRESERVING CENTRAL-UPWIND SCHEME ON TRIANGULAR GRIDS FOR THE SAINT-VENANT SYSTEM

被引:86
作者
Bryson, Steve [1 ]
Epshteyn, Yekaterina [2 ]
Kurganov, Alexander [3 ]
Petrova, Guergana [4 ]
机构
[1] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA
[2] Carnegie Mellon Univ, Dept Math Sci, Pittsburgh, PA 15213 USA
[3] Tulane Univ, Dept Math, New Orleans, LA 70118 USA
[4] Texas A&M Univ, Dept Math, College Stn, TX 77843 USA
来源
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE | 2011年 / 45卷 / 03期
基金
美国国家科学基金会;
关键词
Hyperbolic systems of conservation and balance laws; semi-discrete central-upwind schemes; Saint-Venant system of shallow water equations; FINITE-VOLUME SCHEMES; HYPERBOLIC SYSTEMS; SHALLOW-WATER; CONSERVATION-LAWS; WENO SCHEMES; SOURCE TERMS; ORDER; ACCURACY; LIMITERS;
D O I
10.1051/m2an/2010060
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce a new second-order central-upwind scheme for the Saint-Venant system of shallow water equations on triangular grids. We prove that the scheme both preserves "lake at rest" steady states and guarantees the positivity of the computed fluid depth. Moreover, it can be applied to models with discontinuous bottom topography and irregular channel widths. We demonstrate these features of the new scheme, as well as its high resolution and robustness in a number of numerical examples.
引用
收藏
页码:423 / 446
页数:24
相关论文
共 38 条
[1]   ON ESSENTIALLY NONOSCILLATORY SCHEMES ON UNSTRUCTURED MESHES - ANALYSIS AND IMPLEMENTATION [J].
ABGRALL, R .
JOURNAL OF COMPUTATIONAL PHYSICS, 1994, 114 (01) :45-58
[2]  
ANDRIANOV N, 2004, TESTING NUMERICAL SC
[3]  
[Anonymous], [No title captured]
[4]  
Arminjon P, 1997, INT J COMPUT FLUID D, V9, P1
[5]   A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows [J].
Audusse, E ;
Bouchut, F ;
Bristeau, MO ;
Klein, R ;
Perthame, B .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2004, 25 (06) :2050-2065
[6]   Balanced central schemes for the shallow water equations on unstructured grids [J].
Bryson, S ;
Levy, D .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2005, 27 (02) :532-552
[7]   New non-oscillatory central schemes on unstructured triangulations for hyperbolic systems of conservation laws [J].
Christov, Ivan ;
Popov, Bojan .
JOURNAL OF COMPUTATIONAL PHYSICS, 2008, 227 (11) :5736-5757
[8]   TRIANGLE BASED ADAPTIVE STENCILS FOR THE SOLUTION OF HYPERBOLIC CONSERVATION-LAWS [J].
DURLOFSKY, LJ ;
ENGQUIST, B ;
OSHER, S .
JOURNAL OF COMPUTATIONAL PHYSICS, 1992, 98 (01) :64-73
[9]  
Gerbeau JF, 2001, DISCRETE CONT DYN-B, V1, P89
[10]   Strong stability-preserving high-order time discretization methods [J].
Gottlieb, S ;
Shu, CW ;
Tadmor, E .
SIAM REVIEW, 2001, 43 (01) :89-112