Global existence for the periodic dispersive Hunter-Saxton equation

被引:0
作者
Ye, Weikui [1 ]
Yin, Zhaoyang [1 ,2 ]
机构
[1] Sun Yat Sen Univ, Dept Math, Guangzhou 510275, Peoples R China
[2] Macau Univ Sci & Technol, Fac Informat Technol, Taipa, Macao, Peoples R China
来源
MONATSHEFTE FUR MATHEMATIK | 2020年 / 191卷 / 02期
基金
中国国家自然科学基金;
关键词
The periodic dispersive Hunter-Saxton equation; Local well-posedness; The Kato method; Global existence; SHALLOW-WATER EQUATION; CAMASSA-HOLM; WELL-POSEDNESS; WAVE BREAKING; PARTICLE TRAJECTORIES; DISSIPATIVE SOLUTIONS; WEAK SOLUTIONS; SHORT-PULSE; OSTROVSKY; SCATTERING;
D O I
10.1007/s00605-019-01290-w
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study an integrable dispersive Hunter-Saxton equation in periodic domain. Firstly, we establish the local well-posedness of the Cauchy problem of the equation in Hs(S),s >= 2, by applying the Kato method. Then, based on a sign-preserve property, we obtain a global existence result for the equation. Moreover, we extend the obtained result to some periodic nonlinear partial differential equations of second order of the general form.
引用
收藏
页码:267 / 278
页数:12
相关论文
共 47 条
[41]   On the Cauchy problem for the Camassa-Holm equation [J].
Rodríguez-Blanco, G .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2001, 46 (03) :309-327
[42]   Propagation of ultra-short optical pulses in cubic nonlinear media [J].
Schäfer, T ;
Wayne, CE .
PHYSICA D-NONLINEAR PHENOMENA, 2004, 196 (1-2) :90-105
[43]   Well-posedness and small data scattering for the generalized Ostrovsky equation [J].
Stefanov, Atanas ;
Shen, Yannan ;
Kevrekidis, P. G. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2010, 249 (10) :2600-2617
[44]  
Toland JF., 1996, TOPOL METHOD NONL AN, V7, P1
[45]  
Xin ZP, 2000, COMMUN PUR APPL MATH, V53, P1411, DOI 10.1002/1097-0312(200011)53:11<1411::AID-CPA4>3.3.CO
[46]  
2-X
[47]   On the structure of solutions to the periodic Hunter-Saxton equation [J].
Yin, ZY .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2004, 36 (01) :272-283