Total 2-Rainbow Domination in Graphs

被引:0
作者
Jiang, Huiqin [1 ]
Rao, Yongsheng [1 ]
机构
[1] Guangzhou Univ, Inst Comp Sci & Technol, Guangzhou 510006, Peoples R China
基金
中国国家自然科学基金;
关键词
total 2-rainbow domination; total 2-rainbow domination number; NP-complete; linear-time algorithm; RAINBOW DOMINATION; BOUNDS; NUMBER; ROMAN; SETS;
D O I
10.3390/math10122059
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A total k-rainbow dominating function on a graph G = (V, E) is a function f : V (G) -> 2({1,2,...,k}) such that (i) boolean OR(u is an element of N(v))f(u) = {1, 2, ... , k} for every vertex v with f(v) = empty set, (ii) boolean OR(u is an element of N(v))f(u) not equal empty set for f(v) not equal empty set. The weight of a total 2-rainbow dominating function is denoted by omega(f) = Sigma(v is an element of V(G)) vertical bar f(V)vertical bar. The total k-rainbow domination number of G is the minimum weight of a total k-rainbow dominating function of G. The minimum total 2-rainbow domination problem (MT2RDP) is to find the total 2-rainbow domination number of the input graph. In this paper, we study the total 2-rainbow domination number of graphs. We prove that the MT2RDP is NP-complete for planar bipartite graphs, chordal bipartite graphs, undirected path graphs and split graphs. Then, a linear-time algorithm is proposed for computing the total k-rainbow domination number of trees. Finally, we study the difference in complexity between MT2RDP and the minimum 2-rainbow domination problem.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] On α-total domination in graphs
    Henning, Michael A.
    Rad, Nader Jafari
    [J]. DISCRETE APPLIED MATHEMATICS, 2012, 160 (7-8) : 1143 - 1151
  • [42] Rainbow restrained domination numbers in graphs
    Amjadi, J.
    Sheikholeslami, S. M.
    Volkmann, L.
    [J]. ARS COMBINATORIA, 2016, 124 : 3 - 19
  • [43] The 2-Rainbow Domination Numbers of C4□Cn and C8□Cn
    Shao, Zehui
    Li, Zepeng
    Erves, Rija
    Zerovnik, Janez
    [J]. NATIONAL ACADEMY SCIENCE LETTERS-INDIA, 2019, 42 (05): : 411 - 418
  • [44] Global signed total domination in graphs
    Atapour, Maryam
    Tabriz, Seyed Mahmoud Sheikholeslami
    Khodkar, Abdollah
    [J]. PUBLICATIONES MATHEMATICAE-DEBRECEN, 2011, 79 (1-2): : 7 - 22
  • [45] Total forcing versus total domination in cubic graphs
    Dayila, Randy
    Henning, Michael A.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2019, 354 : 385 - 395
  • [46] Total Domination Versus Domination in Cubic Graphs
    Cyman, Joanna
    Dettlaff, Magda
    Henning, Michael A.
    Lemanska, Magdalena
    Raczek, Joanna
    [J]. GRAPHS AND COMBINATORICS, 2018, 34 (01) : 261 - 276
  • [47] On k-rainbow domination in middle graphs
    Kim, Kijung
    [J]. RAIRO-OPERATIONS RESEARCH, 2021, 55 (06) : 3447 - 3458
  • [48] Restricted total domination in graphs
    Henning, MA
    [J]. DISCRETE MATHEMATICS, 2004, 289 (1-3) : 25 - 44
  • [49] Signed total domination in graphs
    Henning, MA
    [J]. DISCRETE MATHEMATICS, 2004, 278 (1-3) : 109 - 125
  • [50] Total restrained domination in graphs
    Chen, Xing
    Liu, Juan
    Meng, Jixiang
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 62 (08) : 2892 - 2898