Total 2-Rainbow Domination in Graphs

被引:0
作者
Jiang, Huiqin [1 ]
Rao, Yongsheng [1 ]
机构
[1] Guangzhou Univ, Inst Comp Sci & Technol, Guangzhou 510006, Peoples R China
基金
中国国家自然科学基金;
关键词
total 2-rainbow domination; total 2-rainbow domination number; NP-complete; linear-time algorithm; RAINBOW DOMINATION; BOUNDS; NUMBER; ROMAN; SETS;
D O I
10.3390/math10122059
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A total k-rainbow dominating function on a graph G = (V, E) is a function f : V (G) -> 2({1,2,...,k}) such that (i) boolean OR(u is an element of N(v))f(u) = {1, 2, ... , k} for every vertex v with f(v) = empty set, (ii) boolean OR(u is an element of N(v))f(u) not equal empty set for f(v) not equal empty set. The weight of a total 2-rainbow dominating function is denoted by omega(f) = Sigma(v is an element of V(G)) vertical bar f(V)vertical bar. The total k-rainbow domination number of G is the minimum weight of a total k-rainbow dominating function of G. The minimum total 2-rainbow domination problem (MT2RDP) is to find the total 2-rainbow domination number of the input graph. In this paper, we study the total 2-rainbow domination number of graphs. We prove that the MT2RDP is NP-complete for planar bipartite graphs, chordal bipartite graphs, undirected path graphs and split graphs. Then, a linear-time algorithm is proposed for computing the total k-rainbow domination number of trees. Finally, we study the difference in complexity between MT2RDP and the minimum 2-rainbow domination problem.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] 2-Rainbow Domination of the Circulant Graph C(n;{1,3})
    Fu, Xueliang
    Wu, Xiaofeng
    Dong, Gaifang
    Li, Honghui
    Guo, William
    PROCEEDINGS OF THE 2015 INTERNATIONAL CONFERENCE ON TEST, MEASUREMENT AND COMPUTATIONAL METHODS (TMCM 2015), 2015, 26 : 123 - 129
  • [22] The Cartesian product of cycles with small 2-rainbow domination number
    Stepien, Zofia
    Szymaszkiewicz, Lucjan
    Zwierzchowski, Maciej
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2015, 30 (03) : 668 - 674
  • [23] On the 2-rainbow bondage number of planar graphs
    Amjadi, J.
    Parnian, A.
    ARS COMBINATORIA, 2016, 126 : 395 - 405
  • [24] The Cartesian product of cycles with small 2-rainbow domination number
    Zofia Stȩpień
    Lucjan Szymaszkiewicz
    Maciej Zwierzchowski
    Journal of Combinatorial Optimization, 2015, 30 : 668 - 674
  • [25] 2-Rainbow domination number of Cn□C5
    Stepien, Zofia
    Szymaszkiewicz, Alicja
    Szymaszkiewicz, Lucjan
    Zwierzchowski, Maciej
    DISCRETE APPLIED MATHEMATICS, 2014, 170 : 113 - 116
  • [26] Algorithmic Aspects of the Independent 2-Rainbow Domination Number and Independent Roman {2}-Domination Number
    Poureidi, Abolfazl
    Rad, Nader Jafari
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2022, 42 (03) : 709 - 726
  • [27] Independent Rainbow Domination of Graphs
    Zehui Shao
    Zepeng Li
    Aljoša Peperko
    Jiafu Wan
    Janez Žerovnik
    Bulletin of the Malaysian Mathematical Sciences Society, 2019, 42 : 417 - 435
  • [28] Independent Rainbow Domination of Graphs
    Shao, Zehui
    Li, Zepeng
    Peperko, Aljosa
    Wan, Jiafu
    Zerovnik, Janez
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2019, 42 (02) : 417 - 435
  • [29] A new upper bound on the independent 2-rainbow domination number in trees
    Gholami, Elham
    Rad, Nader Jafari
    Tehranian, Abolfazl
    Rasouli, Hamid
    COMMUNICATIONS IN COMBINATORICS AND OPTIMIZATION, 2022, : 261 - 270
  • [30] Total k-rainbow domination subdivision number in graphs
    Khoeilar, Rana
    Kheibari, Mahla
    Shao, Zehui
    Sheikholeslami, Seyed Mahmoud
    COMPUTER SCIENCE JOURNAL OF MOLDOVA, 2020, 28 (02) : 152 - 169