Total 2-Rainbow Domination in Graphs

被引:0
|
作者
Jiang, Huiqin [1 ]
Rao, Yongsheng [1 ]
机构
[1] Guangzhou Univ, Inst Comp Sci & Technol, Guangzhou 510006, Peoples R China
基金
中国国家自然科学基金;
关键词
total 2-rainbow domination; total 2-rainbow domination number; NP-complete; linear-time algorithm; RAINBOW DOMINATION; BOUNDS; NUMBER; ROMAN; SETS;
D O I
10.3390/math10122059
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A total k-rainbow dominating function on a graph G = (V, E) is a function f : V (G) -> 2({1,2,...,k}) such that (i) boolean OR(u is an element of N(v))f(u) = {1, 2, ... , k} for every vertex v with f(v) = empty set, (ii) boolean OR(u is an element of N(v))f(u) not equal empty set for f(v) not equal empty set. The weight of a total 2-rainbow dominating function is denoted by omega(f) = Sigma(v is an element of V(G)) vertical bar f(V)vertical bar. The total k-rainbow domination number of G is the minimum weight of a total k-rainbow dominating function of G. The minimum total 2-rainbow domination problem (MT2RDP) is to find the total 2-rainbow domination number of the input graph. In this paper, we study the total 2-rainbow domination number of graphs. We prove that the MT2RDP is NP-complete for planar bipartite graphs, chordal bipartite graphs, undirected path graphs and split graphs. Then, a linear-time algorithm is proposed for computing the total k-rainbow domination number of trees. Finally, we study the difference in complexity between MT2RDP and the minimum 2-rainbow domination problem.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Total 2-Rainbow Domination in Graphs: Complexity and Algorithms
    Kumar, Manjay
    Reddy, P. Venkata Subba
    INTERNATIONAL JOURNAL OF FOUNDATIONS OF COMPUTER SCIENCE, 2023, : 887 - 906
  • [2] On 2-rainbow domination of generalized Petersen graphs
    Shao, Zehui
    Jiang, Huiqin
    Wu, Pu
    Wang, Shaohui
    Zerovnik, Janez
    Zhang, Xiaosong
    Liu, Jia-Bao
    DISCRETE APPLIED MATHEMATICS, 2019, 257 : 370 - 384
  • [3] Complexity of 2-Rainbow Total Domination Problem
    Sumenjak, Tadeja Kraner
    Tepeh, Aleksandra
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2024, 47 (05)
  • [4] TOTAL 2-RAINBOW DOMINATION NUMBERS OF TREES
    Ahangar, H. Abdollahzadeh
    Amjadi, J.
    Chellali, M.
    Nazari-Moghaddam, S.
    Sheikholeslami, S. M.
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2021, 41 (02) : 345 - 364
  • [5] 2-rainbow domination number of the subdivision of graphs
    Salkhori, Rostam Yarke
    Vatandoost, Ebrahim
    Behtoei, Ali
    COMMUNICATIONS IN COMBINATORICS AND OPTIMIZATION, 2024,
  • [6] On 2-Rainbow Domination of Generalized Petersen Graphs P(ck,k)
    Brezovnik, Simon
    Rupnik Poklukar, Darja
    Zerovnik, Janez
    MATHEMATICS, 2023, 11 (10)
  • [7] Trees with Equal Total Domination and 2-Rainbow Domination Numbers
    Shao, Zehui
    Sheikholeslami, Seyed Mahmoud
    Wang, Bo
    Wu, Pu
    Zhang, Xiaosong
    FILOMAT, 2018, 32 (02) : 599 - 607
  • [8] Averaging 2-rainbow domination and Roman domination
    Alvarado, Jose D.
    Dantas, Simone
    Rautenbach, Dieter
    DISCRETE APPLIED MATHEMATICS, 2016, 205 : 202 - 207
  • [9] The 2-Rainbow Domination of SierpiA"ski Graphs and Extended SierpiA"ski Graphs
    Liu, Jia-Jie
    Chang, Shun-Chieh
    Lin, Chiou-Jiun
    THEORY OF COMPUTING SYSTEMS, 2017, 61 (03) : 893 - 906
  • [10] A Note on Outer-Independent 2-Rainbow Domination in Graphs
    Cabrera-Martinez, Abel
    MATHEMATICS, 2022, 10 (13)