Evaluation of the in vitro cytotoxicity and modulation of the inflammatory response by the bioresorbable polymers poly(D,L-lactide-co-glycolide) and poly(L-lactide-co-glycolide)

被引:13
|
作者
Geddes, Lucy [1 ]
Themistou, Efrosyni [2 ]
Burrows, James F. [3 ]
Buchanan, Fraser J. [1 ]
Carson, Louise [3 ]
机构
[1] Queens Univ Belfast, Sch Mech & Aerosp Engn, Ashby Bldg, Belfast BT9 5AG, Antrim, North Ireland
[2] Queens Univ Belfast, Sch Chem & Chem Engn, David Keir Bldg, Belfast BT9 5AG, Antrim, North Ireland
[3] Queens Univ Belfast, Sch Pharm, Belfast BT9 7BL, Antrim, North Ireland
关键词
Poly(lactide-co-glycolide); Biocompatibility; Cytotoxicity; Quasi Vivo; Lactate; Hydroxycarboxylic acid receptor 1; HCA1; FOREIGN-BODY REACTION; BIOABSORBABLE INTERFERENCE SCREWS; CRUCIATE LIGAMENT RECONSTRUCTION; PATELLAR TENDON GRAFT; L-LACTIDE; TISSUE-RESPONSE; DEGRADATION; LACTATE; IMPLANTS; BIOCOMPATIBILITY;
D O I
10.1016/j.actbio.2021.07.049
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Bioresorbable polymers composed of poly(D,L-lactide-co-glycolide) (PDLLGA) and poly(L-lactide-co-glycolide) (PLLGA) have become increasingly popular for the preparation of bone substitute constructs. However, there are reports of a delayed inflammatory reaction occurring months or years after implanta-tion. Due to the long polymer degradation times, in vitro tests carried out at physiological temperature, 37 degrees C, tend to assess only the short-term biocompatibility of these materials. The aim of this work is to de-velop an in vitro protocol that can be used to assess the long-term cytotoxicity of bioresorbable polymers in a time efficient manner. This study used a previously developed and validated accelerated degradation protocol to obtain samples of PDLLGA and PLLGA at increasing levels of degradation. Samples were then applied to standard ISO 10993-5 direct contact cytotoxicity testing and it was found that PDLLGA samples showed increasing levels of cytotoxicity at the later stages of degradation, with PLLGA samples demon-strating significantly less cytotoxic behaviour. Following concern that accumulation of acidic degradation products in a closed multi-well culture environment could overestimate cytotoxicity, we developed and validated a new dynamic flow culture methodology, for testing the cytotoxicity of these degradable materials, by adapting a commercial "organ on a chip" flow culture system, Quasi Vivo (R). In addition to cytotoxicity testing, we have carried out profiling of inflammatory cytokines released by cells in response to degraded PDLLGA and PLLGA, and have suggested mechanism by which lactide-based bioresorbable materials could modulate the inflammatory response through the G-protein coupled receptor (GPCR), hy-droxycarboxylic acid receptor 1 (HCA1). Statement of significance Bioresorbable materials naturally disintegrate over time when implanted into the body. They are often used to make screws and clips for repair of broken bones. Unfortunately, some patients can react badly to the material, resulting in painful inflammation. Biomaterials scientists are interested in developing materials that are more compatible with the body. However, it is very difficult to predict the long-term compatibility of bioresorbable materials in the lab. In our study, we have developed a method that will allow us to study the effects of the materials as they continue to break down. This will help us understand why the materials may cause inflammation, and will support research into the development of new and improved materials for bone repair. (c) 2021 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:261 / 275
页数:15
相关论文
共 50 条
  • [31] Influences of tensile load on in vitro degradation of an electrospun poly(L-lactide-co-glycolide) scaffold
    Li, Ping
    Feng, Xiaoliang
    Jia, Xiaoling
    Fan, Yubo
    ACTA BIOMATERIALIA, 2010, 6 (08) : 2991 - 2996
  • [32] Degradation of poly(D,L-lactide-co-glycolide) 50:50 implant in aqueous medium
    Farahani, TD
    Entezami, AA
    Mobedi, H
    Abtahi, M
    IRANIAN POLYMER JOURNAL, 2005, 14 (08) : 753 - 763
  • [33] Poly(D, L-lactide-co-glycolide)/montmorillonite nanoparticles for improved oral delivery of exemestane
    Li, Zhen
    Liu, Kexin
    Sun, Pengyuan
    Mei, Lin
    Hao, Tangna
    Tian, Yan
    Tang, Zeyao
    Li, Lei
    Chen, Dawei
    JOURNAL OF MICROENCAPSULATION, 2013, 30 (05) : 432 - 440
  • [34] Effect of divalent cations on pore formation and degradation of Poly(D,L-lactide-co-glycolide)
    Fredenberg, Susanne
    Reslow, Mats
    Axelsson, Anders
    PHARMACEUTICAL DEVELOPMENT AND TECHNOLOGY, 2007, 12 (06) : 563 - 572
  • [35] Thermal Properties and Degradation Behavior of Linear and Branched Poly(L-lactide)s and Poly(L-lactide-co-glycolide)s
    Atkinson, Jeffrey L.
    Vyazovkin, Sergey
    MACROMOLECULAR CHEMISTRY AND PHYSICS, 2012, 213 (09) : 924 - 936
  • [36] Sustained release microspheres of metoclopramide using poly(D,L-lactide-co-glycolide) copolymers
    Elkheshen, SA
    Radwan, MA
    JOURNAL OF MICROENCAPSULATION, 2000, 17 (04) : 425 - 435
  • [37] Solubility and diffusivity of CO2 in poly(L-lactide)-hydroxyapatite and poly(D,L-lactide-co-glycolide)-hydroxyapatite composite biomaterials
    Markocic, Elena
    Skerget, Mojca
    Knez, Zeljko
    JOURNAL OF SUPERCRITICAL FLUIDS, 2011, 55 (03) : 1046 - 1051
  • [38] Fabrication of Biodegradable Poly(d,l-lactide-co-glycolide) Nanoparticles Containing Tamoxifen Citrate
    Mirzajani, Fatemeh
    Rafati, Hasan
    Atyabi, Fatemeh
    IRANIAN POLYMER JOURNAL, 2010, 19 (06) : 437 - 446
  • [39] Dynamic Mechanical Analysis and Hydrolytic Degradation Behavior of Linear and Branched Poly(L-lactide)s and Poly(L-lactide-co-glycolide)s
    Atkinson, Jeffrey L.
    Vyazovkin, Sergey
    MACROMOLECULAR CHEMISTRY AND PHYSICS, 2013, 214 (07) : 835 - 843
  • [40] Poly(d,l-Lactide-Co-Glycolide) Encapsulated Poly(Vinyl Alcohol) Hydrogel as a Drug Delivery System
    Tarun K. Mandal
    Levon A. Bostanian
    Richard A. Graves
    Sharlene R. Chapman
    Pharmaceutical Research, 2002, 19 : 1713 - 1719