In Situ Reactive Assembly of Scalable Core-Shell Sulfur-MnO2 Composite Cathodes

被引:373
作者
Liang, Xiao [1 ]
Nazar, Linda F. [1 ]
机构
[1] Univ Waterloo, Dept Chem, Waterloo, ON N2L 3G1, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
lithium-sulfur battery; MnO2; core-shell; scalable; BATTERIES; POLYSULFIDES; STABILITY; HOST; LIFE;
D O I
10.1021/acsnano.5b07458
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The lithium-sulfur battery is the subject of much recent attention, but the polysulfide shuttle remains problematic owing to dissolution of intermediate polysulfide species in the electrolyte. Despite much effort in limiting such dissolution via physical confinement or chemical binding to the sulfur host materials, the high cost and complicated preparation of the related materials present an impediment to their practical application. Here we demonstrate a simple methodology to fabricate an effective nanometric MnO2 shell on sulfur particles, which is realized by an in situ redox reaction between sulfur and KMnO4 under ambient conditions. The bifunctional MnO2 shell provides physical confinement and chemical interaction and shows excellent efficiency for trapping the polysulfides. MnO, sheets crystallized onto nanosized sulfur particles result in cathodes with a very low fading rate of 0.039% per cycle over 1700 cycles in Li-S cells. Moreover, directly crystallizing nanometric shells of MnO2 on micrometer-sized sublimed sulfur delivers stable Li-S cycling performance over 800 cycles. Since both sulfur and KMnO4 are inexpensive and widely used, the production of MnO2-coated sulfur composites can be easily scaled-up for practical applications of Li-S batteries in light of the very simple reaction processes involved.
引用
收藏
页码:4192 / 4198
页数:7
相关论文
共 31 条
[1]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[2]   On the Surface Chemical Aspects of Very High Energy Density, Rechargeable Li-Sulfur Batteries [J].
Aurbach, Doron ;
Pollak, Elad ;
Elazari, Ran ;
Salitra, Gregory ;
Kelley, C. Scordilis ;
Affinito, John .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2009, 156 (08) :A694-A702
[3]   A layer-by-layer supramolecular structure for a sulfur cathode [J].
Bucur, Claudiu B. ;
Muldoon, John ;
Lita, Adrian .
ENERGY & ENVIRONMENTAL SCIENCE, 2016, 9 (03) :992-998
[4]   Cathode Composites for Li-S Batteries via the Use of Oxygenated Porous Architectures [J].
Demir-Cakan, Rezan ;
Morcrette, Mathieu ;
Nouar, Farid ;
Davoisne, Carine ;
Devic, Thomas ;
Gonbeau, Danielle ;
Dominko, Robert ;
Serre, Christian ;
Ferey, Gerard ;
Tarascon, Jean-Marie .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (40) :16154-16160
[5]   New Approaches for High Energy Density Lithium-Sulfur Battery Cathodes [J].
Evers, Scott ;
Nazar, Linda F. .
ACCOUNTS OF CHEMICAL RESEARCH, 2013, 46 (05) :1135-1143
[6]   Rational design of sulphur host materials for Li-S batteries: correlating lithium polysulphide adsorptivity and self-discharge capacity loss [J].
Hart, Connor J. ;
Cuisinier, Marine ;
Liang, Xiao ;
Kundu, Dipan ;
Garsuch, Arnd ;
Nazar, Linda F. .
CHEMICAL COMMUNICATIONS, 2015, 51 (12) :2308-2311
[7]   Solubility of Elemental Sulfur in Toluene between (267.15 and 313.15) K under Atmospheric Pressure [J].
Jay, Sophie ;
Cezac, Pierre ;
Serin, Jean-Paul ;
Contamine, Francois ;
Martin, Catherine ;
Mercadier, Jacques .
JOURNAL OF CHEMICAL AND ENGINEERING DATA, 2009, 54 (12) :3238-3241
[8]   Advances in Li-S batteries [J].
Ji, Xiulei ;
Nazar, Linda F. .
JOURNAL OF MATERIALS CHEMISTRY, 2010, 20 (44) :9821-9826
[9]  
Ji XL, 2009, NAT MATER, V8, P500, DOI [10.1038/NMAT2460, 10.1038/nmat2460]
[10]   Hierarchically Structured Sulfur/Carbon Nanocomposite Material for High-Energy Lithium Battery [J].
Liang, Chengdu ;
Dudney, Nancy J. ;
Howe, Jane Y. .
CHEMISTRY OF MATERIALS, 2009, 21 (19) :4724-4730