In-Memory Computing with Memristor Arrays

被引:0
作者
Li, Can [1 ]
Belkin, Daniel [1 ,4 ]
Li, Yunning [1 ]
Yan, Peng [1 ,5 ]
Hu, Miao [2 ]
Ge, Ning [3 ]
Jiang, Hao [1 ]
Montgomery, Eric [2 ]
Lin, Peng [1 ]
Wang, Zhongrui [1 ]
Strachan, John Paul [2 ]
Barnell, Mark [6 ]
Wu, Qing [6 ]
Williams, R. Stanley [2 ]
Yang, J. Joshua [1 ]
Xia, Qiangfei [1 ]
机构
[1] Univ Massachusetts, Amherst, MA 01003 USA
[2] Hewlett Packard Enterprise, Hewlett Packard Labs, Palo Alto, CA 94304 USA
[3] HP Inc, HP Labs, Palo Alto, CA 94304 USA
[4] Swarthmore Coll, Swarthmore, PA 19081 USA
[5] Huazhong Univ Sci & Technol, Wuhan Natl Lab Optoelect, Wuhan 430074, Hubei, Peoples R China
[6] US Air Force, Res Lab, Informat Directorate, Rome, NY 13441 USA
来源
2018 IEEE 10TH INTERNATIONAL MEMORY WORKSHOP (IMW) | 2018年
关键词
in-memory computing; memristor; RRAM; online learning; neural network; NETWORK;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Memristors with tunable non-volatile resistance states offer the potential for in-memory computing that mitigates the von-Neumann bottleneck. We build a large scale memristor array by integrating a transistor array with Ta/HfO2 memristors that have stable multilevel resistance states and linear IV characteristic. With off-chip peripheral driving circuits, the memristor chip is capable of high-precision analog computing and online learning. We demonstrate a weight-update scheme that provides linear and symmetric potentiation and depression with no more than two pulses for each cell. We train the array as a single-layer fully-connected feedforward neural network for the WDBC data base and achieve 98% classification accuracy. We further partition the array into a two-layer network, which achieves 91.71% classification accuracy for MNIST database experimentally. The system demonstrates high defect tolerance and excellent speed-energy efficiency.
引用
收藏
页码:161 / 164
页数:4
相关论文
共 50 条
[21]   In-Memory Computing with Resistive Memory Circuits: Status and Outlook [J].
Pedretti, Giacomo ;
Ielmini, Daniele .
ELECTRONICS, 2021, 10 (09)
[22]   In-Memory Hamming Error-Correcting Code in Memristor Crossbar [J].
Bae, Woorham ;
Han, Jin-Woo ;
Yoon, Kyung Jean .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2022, 69 (07) :3700-3707
[23]   In-memory computing to break the memory wall* [J].
Huang, Xiaohe ;
Liu, Chunsen ;
Jiang, Yu-Gang ;
Zhou, Peng .
CHINESE PHYSICS B, 2020, 29 (07)
[24]   Multi-Gas Sensing Electronic Nose Using Memristor-Based In-Memory Computing [J].
Tan, Jinpei ;
Duan, Shukai ;
Wang, Lidan ;
Yan, Jia .
IEEE SENSORS JOURNAL, 2023, 23 (22) :28526-28534
[25]   Vector-Matrix Multiplier Architecture for In-Memory Computing Applications With RRAM Arrays [J].
Boro, Bipul ;
Parmar, Rushik ;
Trivedi, Gaurav .
IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2025, 24 :249-259
[26]   Approximate Memristive In-memory Computing [J].
Yantir, Hasan Erdem ;
Eltawil, Ahmed M. ;
Kurdahi, Fadi J. .
ACM TRANSACTIONS ON EMBEDDED COMPUTING SYSTEMS, 2017, 16
[27]   In-memory computing with emerging nonvolatile memory devices [J].
Cheng, Caidie ;
Tiw, Pek Jun ;
Cai, Yimao ;
Yan, Xiaoqin ;
Yang, Yuchao ;
Huang, Ru .
SCIENCE CHINA-INFORMATION SCIENCES, 2021, 64 (12)
[28]   Reconfigurable In-Memory Computing with Resistive Memory Crossbar [J].
Zha, Yue ;
Li, Jing .
2016 IEEE/ACM INTERNATIONAL CONFERENCE ON COMPUTER-AIDED DESIGN (ICCAD), 2016,
[29]   In-memory computing with emerging nonvolatile memory devices [J].
Caidie Cheng ;
Pek Jun Tiw ;
Yimao Cai ;
Xiaoqin Yan ;
Yuchao Yang ;
Ru Huang .
Science China Information Sciences, 2021, 64
[30]   In-memory computing based on phase change memory for high energy efficiency [J].
He, Luchang ;
Li, Xi ;
Xie, Chenchen ;
Song, Zhitang .
SCIENCE CHINA-INFORMATION SCIENCES, 2023, 66 (10)