In-Memory Computing with Memristor Arrays

被引:0
|
作者
Li, Can [1 ]
Belkin, Daniel [1 ,4 ]
Li, Yunning [1 ]
Yan, Peng [1 ,5 ]
Hu, Miao [2 ]
Ge, Ning [3 ]
Jiang, Hao [1 ]
Montgomery, Eric [2 ]
Lin, Peng [1 ]
Wang, Zhongrui [1 ]
Strachan, John Paul [2 ]
Barnell, Mark [6 ]
Wu, Qing [6 ]
Williams, R. Stanley [2 ]
Yang, J. Joshua [1 ]
Xia, Qiangfei [1 ]
机构
[1] Univ Massachusetts, Amherst, MA 01003 USA
[2] Hewlett Packard Enterprise, Hewlett Packard Labs, Palo Alto, CA 94304 USA
[3] HP Inc, HP Labs, Palo Alto, CA 94304 USA
[4] Swarthmore Coll, Swarthmore, PA 19081 USA
[5] Huazhong Univ Sci & Technol, Wuhan Natl Lab Optoelect, Wuhan 430074, Hubei, Peoples R China
[6] US Air Force, Res Lab, Informat Directorate, Rome, NY 13441 USA
来源
2018 IEEE 10TH INTERNATIONAL MEMORY WORKSHOP (IMW) | 2018年
关键词
in-memory computing; memristor; RRAM; online learning; neural network; NETWORK;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Memristors with tunable non-volatile resistance states offer the potential for in-memory computing that mitigates the von-Neumann bottleneck. We build a large scale memristor array by integrating a transistor array with Ta/HfO2 memristors that have stable multilevel resistance states and linear IV characteristic. With off-chip peripheral driving circuits, the memristor chip is capable of high-precision analog computing and online learning. We demonstrate a weight-update scheme that provides linear and symmetric potentiation and depression with no more than two pulses for each cell. We train the array as a single-layer fully-connected feedforward neural network for the WDBC data base and achieve 98% classification accuracy. We further partition the array into a two-layer network, which achieves 91.71% classification accuracy for MNIST database experimentally. The system demonstrates high defect tolerance and excellent speed-energy efficiency.
引用
收藏
页码:161 / 164
页数:4
相关论文
共 50 条
  • [1] Optimization Schemes for In-Memory Linear Regression Circuit With Memristor Arrays
    Wang, Shiqing
    Sun, Zhong
    Liu, Yuheng
    Bao, Shengyu
    Cai, Yimao
    Ielmini, Daniele
    Huang, Ru
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2021, 68 (12) : 4900 - 4909
  • [2] Flexible and Stretchable Memristive Arrays for in-Memory Computing
    Liu, Xusheng
    Cao, Jie
    Qiu, Jie
    Zhang, Xumeng
    Wang, Ming
    Liu, Qi
    FRONTIERS IN NANOTECHNOLOGY, 2022, 3
  • [3] Recent Advances in In-Memory Computing: Exploring Memristor and Memtransistor Arrays with 2D Materials
    Zhou, Hangbo
    Li, Sifan
    Ang, Kah-Wee
    Zhang, Yong-Wei
    NANO-MICRO LETTERS, 2024, 16 (01)
  • [4] Efficient Implementation of Multiplexer and Full-Adder Functions Based on Memristor Arrays for In-memory Computing
    Gan, Zhouchao
    Zhang, Chenyu
    Ma, Yinghao
    Zhang, Dongdong
    Miao, Xiangshui
    Wang, Xingsheng
    8TH IEEE ELECTRON DEVICES TECHNOLOGY & MANUFACTURING CONFERENCE, EDTM 2024, 2024, : 136 - 138
  • [5] Hardware Implementation of Memristor-based In-Memory Computing for Classification Tasks
    Eslami, Mohammad Reza
    Takhtardeshir, Soheib
    Sharif, Sarah
    Banad, Yaser Mike
    2024 IEEE 67TH INTERNATIONAL MIDWEST SYMPOSIUM ON CIRCUITS AND SYSTEMS, MWSCAS 2024, 2024, : 126 - 130
  • [6] A Re-configurable Memristor Array Structure for In-Memory Computing Applications
    Halawani, Yasmin
    Mohammad, Baker
    Al-Qutayri, Mahmoud
    Al-Sarawi, Said
    2018 30TH INTERNATIONAL CONFERENCE ON MICROELECTRONICS (ICM), 2018, : 160 - 163
  • [7] Free BDD based CAD of Compact Memristor Crossbars for in-Memory Computing
    Ul Hassen, Amad
    Khokhar, Salman Anwar
    Butt, Haseeb Aslam
    Jha, Sumit Kumar
    NANOARCH'18: PROCEEDINGS OF THE 14TH IEEE/ACM INTERNATIONAL SYMPOSIUM ON NANOSCALE ARCHITECTURES, 2018, : 107 - 113
  • [8] Energy Efficient Memristor-Based Subtractors and Comparator for In-Memory Computing in MAGIC
    Kaushik, Nandit
    Srinivasu, B.
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2024, 71 (06) : 3171 - 3175
  • [9] Superconducting in-memory computing architecture coupling with memristor synapses for binarized neural networks
    Xu, Zuyu
    Liu, Yu
    Wu, Zuheng
    Zhu, Yunlai
    Wang, Jun
    Yang, Fei
    Dai, Yuehua
    SUPERCONDUCTOR SCIENCE & TECHNOLOGY, 2024, 37 (06):
  • [10] A Memristor-Based In-Memory Computing Network for Hamming Code Error Correction
    Sun, Xinhao
    Zhang, Teng
    Cheng, Caidie
    Yan, Xiaoqin
    Cai, Yimao
    Yang, Yuchao
    Huang, Ru
    IEEE ELECTRON DEVICE LETTERS, 2019, 40 (07) : 1080 - 1083