Simultaneous excitation and parameter identification for non-linear structural systems

被引:2
作者
Wan, Zhimin [1 ,2 ,3 ]
Wang, Ting [4 ]
Huang, Qibai [1 ,2 ]
Zheng, Weiguang [1 ,2 ]
Gu, Feng [3 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Mech Sci & Engn, Wuhan 430074, Hubei, Peoples R China
[2] Hubei Inst Specialty Vehicle, Suizhou 441300, Peoples R China
[3] Nantong Vocat Univ, Sch Vehicle & Transportat Engn, Nantong 226000, Peoples R China
[4] Nantong Vocat Univ, Sch Mech Engn, Nantong 226000, Peoples R China
基金
中国国家自然科学基金;
关键词
parameter identification; excitation identification; extended Kalman filter; non-linear system; EXTENDED KALMAN FILTER; LIMITED INPUT; DAMAGE; STATE;
D O I
10.21595/jve.2017.17576
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
In this paper, an algorithm is proposed for simultaneous excitation and parameter identification for non-linear system in state space. The algorithm is based on the sequential application of extended Kalman estimator for non-linear structural parameters and the weighted least squares estimation for unknown excitations. The state and parameter are reformed into the augmented state, and the state space equations are non-linear associated with the augmented state. With the first-order Taylor expansion for nonlinear system and approximately linear minimum-variance unbiased estimation, a recursive algorithm is derived where the identification of the augmented state and the excitation are interconnected. Two numerical examples which identify uncertain parameters of a 3-DOF Duffing-type system and a four-story hysteretic shear-beam building subject to unknown random excitation respectively, are conducted to demonstrate the effectiveness of the proposed approach.
引用
收藏
页码:3968 / 3980
页数:13
相关论文
共 22 条
[11]   Extended Kalman filtering for the detection of damage in linear mechanical structures [J].
Liu, X. ;
Escamilla-Ambrosio, P. J. ;
Lieven, N. A. J. .
JOURNAL OF SOUND AND VIBRATION, 2009, 325 (4-5) :1023-1046
[12]   Joint input-response estimation for structural systems based on reduced-order models and vibration data from a limited number of sensors [J].
Lourens, E. ;
Papadimitriou, C. ;
Gillijns, S. ;
Reynders, E. ;
De Roeck, G. ;
Lombaert, G. .
MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2012, 29 :310-327
[13]   Identification of the state equation in complex non-linear systems [J].
Masri, SF ;
Caffrey, JP ;
Caughey, TK ;
Smyth, AW ;
Chassiakos, AG .
INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2004, 39 (07) :1111-1127
[14]   Application of neural networks for detection of changes in nonlinear systems [J].
Masri, SF ;
Smyth, AW ;
Chassiakos, AG ;
Caughey, TK ;
Hunter, NF .
JOURNAL OF ENGINEERING MECHANICS-ASCE, 2000, 126 (07) :666-676
[15]   A Kalman filter approach to virtual sensing for active noise control [J].
Petersen, Cornelis D. ;
Fraanje, Rufus ;
Cazzolato, Ben S. ;
Zander, Anthony C. ;
Hansen, Colin H. .
MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2008, 22 (02) :490-508
[16]   Adaptive H∞ filter:: Its application to structural identification [J].
Sato, T ;
Qi, K .
JOURNAL OF ENGINEERING MECHANICS-ASCE, 1998, 124 (11) :1233-1240
[17]   STRUCTURAL SYSTEM-IDENTIFICATION .2. EXPERIMENTAL-VERIFICATION [J].
SHINOZUKA, M ;
GHANEM, R .
JOURNAL OF ENGINEERING MECHANICS, 1995, 121 (02) :265-273
[18]   Development of adaptive modeling techniques for non-linear hysteretic systems [J].
Smyth, AW ;
Masri, SF ;
Kosmatopoulos, EB ;
Chassiakos, AG ;
Caughey, TK .
INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2002, 37 (08) :1435-1451
[19]  
Wu Z.S., 2003, Journal of Applied Mechanics, V6, P1043, DOI DOI 10.2208/JOURNALAM.6.1043
[20]   An adaptive extended Kalman filter for structural damage identifications II: unknown inputs [J].
Yang, J. N. ;
Pan, S. ;
Huang, H. .
STRUCTURAL CONTROL & HEALTH MONITORING, 2007, 14 (03) :497-521