Vehicle Detection in Aerial Images Based on Lightweight Deep Convolutional Network and Generative Adversarial Network

被引:22
|
作者
Shen, Jiaquan [1 ,2 ]
Liu, Ningzhong [1 ,2 ]
Sun, Han [1 ,2 ]
Zhou, Huiyu [3 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Coll Comp Sci & Technol, Nanjing 211106, Peoples R China
[2] MIIT Key Lab Pattern Anal & Machine Intelligence, Nanjing 211106, Peoples R China
[3] Univ Leicester, Dept Informat, Leicester LE1 7RH, Leics, England
基金
中国国家自然科学基金;
关键词
Vehicle detection; lightweight convolutional network; generative adversarial network; aerial images;
D O I
10.1109/ACCESS.2019.2947143
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Vehicle detection in aerial images is a challenging task and plays an important role in a wide range of applications. Traditional detection algorithms are based on sliding-window searching and shallow-learning-based features, which limits the ability to represent features and generates a lot of computational costs. Recently, with the successful application of convolutional neural network in computer vision, many state-of-the-art detectors have been developed based on deep CNNs. However, these CNN-based models still face some difficulties and challenges in vehicle detection in aerial images. Firstly, the CNN-based detection model requires extensive calculations during training and detection, and the accuracy of detection for small objects is not high. In addition, deep learning models often require a large amount of sample data to train a robust detection model, while the annotated data of aerial vehicles is limited. In this study, we propose a lightweight deep convolutional neural network detection model named LD-CNNs. The detection algorithm not only greatly reduces the computational costs of the model, but also significantly improves the accuracy of the detection. What's more, in order to cope with the problem of insufficient training samples, we develop a multi-condition constrained generative adversarial network named MC-GAN, which can effectively generate samples. The detection performance of the proposed model has been evaluated on the Munich public dataset and the collected dataset respectively. The results show that on the Munich dataset, the proposed method achieves 86.9% on mAP (mean average precision), F1-score is 0.875, and the detection time is 1.64s on Nvidia Titan XP. At present, these detection indicators have reached state-of-the-art level in vehicle detection of aerial images.
引用
收藏
页码:148119 / 148130
页数:12
相关论文
共 50 条
  • [21] Anterior cruciate ligament tear detection based on convolutional neural network and generative adversarial neural network
    Kavita Joshi
    K. Suganthi
    Neural Computing and Applications, 2024, 36 (9) : 5021 - 5030
  • [22] Convolutional Neural Network Based Automatic Object Detection on Aerial Images
    Sevo, Igor
    Avramovic, Aleksej
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2016, 13 (05) : 740 - 744
  • [23] Vehicle Detection and Counting in High-Resolution Aerial Images Using Convolutional Regression Neural Network
    Tayara, Hilal
    Soo, Kim Gil
    Chong, Kil To
    IEEE ACCESS, 2018, 6 : 2220 - 2230
  • [24] Research on Embroidery Image Restoration Based on Improved Deep Convolutional Generative Adversarial Network
    Liu Yixuan
    Ge Guangying
    Qi Zhenling
    Li Zhenxuan
    Sun Fulin
    LASER & OPTOELECTRONICS PROGRESS, 2023, 60 (20)
  • [25] Fast and computationally efficient generative adversarial network algorithm for unmanned aerial vehicle-based network coverage optimization
    Ruzicka, Marek
    Volosin, Marcel
    Gazda, Juraj
    Maksymyuk, Taras
    Han, Longzhe
    Dohler, Mischa
    INTERNATIONAL JOURNAL OF DISTRIBUTED SENSOR NETWORKS, 2022, 18 (03)
  • [26] Optimal Deep Convolutional Neural Network for Vehicle Detection in Remote Sensing Images
    Alshahrani, Saeed Masoud
    Alotaibi, Saud S.
    Al-Otaibi, Shaha
    Mousa, Mohamed
    Hilal, Anwer Mustafa
    Abdelmageed, Amgad Atta
    Motwakel, Abdelwahed
    Eldesouki, Mohamed I.
    CMC-COMPUTERS MATERIALS & CONTINUA, 2023, 74 (02): : 3117 - 3131
  • [27] Power Tower Anomaly Detection from Unmanned Aerial Vehicles Inspection Images Based on Improved Generative Adversarial Network
    Zhong L.
    Hu X.
    Liu K.
    Diangong Jishu Xuebao/Transactions of China Electrotechnical Society, 2022, 37 (09): : 2230 - 2240and2262
  • [28] A Multi-Scale Feature Fusion Based Lightweight Vehicle Target Detection Network on Aerial Optical Images
    Yu, Chengrui
    Jiang, Xiaonan
    Wu, Fanlu
    Fu, Yao
    Pei, Junyan
    Zhang, Yu
    Li, Xiangzhi
    Fu, Tianjiao
    REMOTE SENSING, 2024, 16 (19)
  • [29] Optimal deep generative adversarial network and convolutional neural network for rice leaf disease prediction
    Stephen, Ancy
    Punitha, A.
    Chandrasekar, A.
    VISUAL COMPUTER, 2024, 40 (02) : 919 - 936
  • [30] Pavement crack detection algorithm based on generative adversarial network and convolutional neural network under small samples
    Xu, Boqiang
    Liu, Chao
    MEASUREMENT, 2022, 196