Euler-Lagrange Equation in Free Coordinates

被引:1
作者
Alotaibi, Mastourah M. [1 ]
Altoum, Sami H. [2 ]
机构
[1] Umm Al Qura Univ, Dept Math Sci, Coll Appl Sci, Mecca, Saudi Arabia
[2] Umm Al Qura Univ, AL Qunfudhah Univ Coll, Dept Math, Mecca, Saudi Arabia
关键词
VARIATIONAL-PRINCIPLES;
D O I
10.1155/2022/3860704
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we introduce different equivalent formulations of variational principle. The language of differential forms and manifold has been utilized to deduce Euler-Lagrange equations in free coordinates. Thus, the expression is simple and global.
引用
收藏
页数:6
相关论文
共 18 条
  • [1] Aksenov A. V., 2021, Journal of Physics: Conference Series, V2036, DOI 10.1088/1742-6596/2036/1/012026
  • [2] [Anonymous], 1968, MATH SCI ENG
  • [3] [Anonymous], 1981, Gauge Theory and Variational Principles
  • [4] Variational principles for symplectic eigenvalues
    Bhatia, Rajendra
    Jain, Tanvi
    [J]. CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2021, 64 (03): : 553 - 559
  • [5] Bluman GW, 1989, SYMMETRIES DIFFERENT
  • [6] VARIATIONAL PRINCIPLES OF MICROMAGNETICS REVISITED
    Di Fratta, Giovanni
    Muratov, Cyrill B.
    Rybakov, Filipp N.
    Slastikov, Valeriy V.
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2020, 52 (04) : 3580 - 3599
  • [7] Gray A., 1998, MODERN DIFFERENTIAL
  • [8] Guggenheimer H., 1963, Differential geometry
  • [9] He J.H., 2020, VARIATIONAL PRINCIPL
  • [10] Generalized variational principles for buckling analysis of circular cylinders
    He, Ji-Huan
    [J]. ACTA MECHANICA, 2020, 231 (03) : 899 - 906