Competitive adsorption of Cu2+, Cd2+ and Ni2+ from an aqueous solution on graphene oxide membranes

被引:62
|
作者
Tan, Ping [1 ]
Hu, Yongyou [1 ]
Bi, Qi [1 ]
机构
[1] South China Univ Technol, Coll Environm & Energy, Key Lab Pollut Control & Ecol Remediat Ind Agglom, Minist Educ, Guangzhou 510006, Guangdong, Peoples R China
关键词
Graphene oxide membrane; Competitive adsorption; Heavy metals; Metal ion displacement; Mechanisms; METAL-IONS; SELECTIVE ADSORPTION; HUMIC-ACID; CD(II); COPPER; SORBENTS; PB(II); LEAD;
D O I
10.1016/j.colsurfa.2016.08.081
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A novel graphene oxide membrane (GOM) was prepared using the vacuum filtration-induced directional flow method. The properties of GOM were characterized by scanning electron microscope, X-ray diffraction instrument, transmission electron microscope, and Fourier transform infrared spectroscopy apparatus. The adsorptive properties of Cu2+, Cd2+ and Ni2+ onto GOM were systematically investigated in single, binary and ternary solutions by batch experiments. In a single system, the maximum adsorption capacities of Cu2+, Cd2+ and Ni2+ obtained by the Langmuir model were 1.21, 0.81 and 1.08 mmol/g, respectively. The isotherms results for Cu2+ indicated that GOM exhibited good selectivity in the adsorption of Cu2+ over Cd2+ and Ni2+. The adsorption capacity followed the order of Cu2+ > Ni2+ > Cd2+ in binary systems. For ternary system, the order of the adsorption capacity was Cu2+ > Cd2+ > Ni2+. Previously adsorbed metal ions on GOM could be displaced by subsequently adsorbed metal ions from the solution. The difference in hard and soft acids and bases of Cu2+, Cd2+ and Ni2+ solutions was identified as the main reason for GOM to be able to selectively adsorb favorable metal ions during competitive adsorption in binary systems. This interaction mechanism between the favorable component and other metal ions could be the primary cause of direct displacement. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:56 / 64
页数:9
相关论文
共 50 条
  • [1] Adsorption of Cu2+, Cd2+ and Ni2+ from aqueous single metal solutions on graphene oxide membranes
    Tan, Ping
    Sun, Jian
    Hu, Yongyou
    Fang, Zheng
    Bi, Qi
    Chen, Yuancai
    Cheng, Jianhua
    JOURNAL OF HAZARDOUS MATERIALS, 2015, 297 : 251 - 260
  • [2] Non-competitive and competitive adsorption of Cd2+, Ni2+, and Cu2+ by biogenic vaterite
    Liu, Renlu
    Lian, Bin
    SCIENCE OF THE TOTAL ENVIRONMENT, 2019, 659 : 122 - 130
  • [3] Adsorption of Cu2+ and Ni2+ from Aqueous Solution by Arabinoxylan Hydrogel: Equilibrium, Kinetic, Competitive Adsorption
    Zhong, Linxin
    Peng, Xinwen
    Song, Lixue
    Yang, Dong
    Cao, Xuefei
    Sun, Runcang
    SEPARATION SCIENCE AND TECHNOLOGY, 2013, 48 (17) : 2659 - 2669
  • [4] Adsorption of Cd2+, Cu2+, and Ni2+ with Modified Silk Fabric
    Mia, Md Shipan
    Zhu, Xiaowei
    Yao, Ping
    Zhao, Juntao
    Yan, Xiaojie
    Xing, Tieling
    Chen, Guoqiang
    FIBERS AND POLYMERS, 2021, 22 (11) : 3003 - 3013
  • [5] Adsorption of Cd2+, Cu2+, and Ni2+ with Modified Silk Fabric
    Md Shipan Mia
    Xiaowei Zhu
    Ping Yao
    Juntao Zhao
    Xiaojie Yan
    Tieling Xing
    Guoqiang Chen
    Fibers and Polymers, 2021, 22 : 3003 - 3013
  • [6] Competitive adsorption of Cu2+ in Cu2+, Co2+ and Ni2+ mixed multi-metal solution onto graphene oxide (GO)-based hybrid membranes
    Dou, Weijun
    Liu, Junsheng
    Li, Meng
    JOURNAL OF MOLECULAR LIQUIDS, 2021, 322
  • [7] Adsorption of Cu2+ and Cd2+ from aqueous solution by novel electrospun poly(vinyl alcohol)/graphene oxide nanofibers
    Tan, Ping
    Wen, Junjie
    Hu, Yongyou
    Tan, Xiaojun
    RSC ADVANCES, 2016, 6 (83) : 79641 - 79650
  • [8] The role of bare and modified nano nickel oxide as efficient adsorbents for the removal of Cd2+, Cu2+, and Ni2+ from aqueous solution
    Shahriar Mahdavi
    Nadereh Amini
    Environmental Earth Sciences, 2016, 75
  • [9] The role of bare and modified nano nickel oxide as efficient adsorbents for the removal of Cd2+, Cu2+, and Ni2+ from aqueous solution
    Mahdavi, Shahriar
    Amini, Nadereh
    ENVIRONMENTAL EARTH SCIENCES, 2016, 75 (23)
  • [10] Removal of metallic trace elements (Pb2+, Cd2+, Cu2+, and Ni2+) from aqueous solution by adsorption onto cerium oxide modified activated carbon
    Kouotou, Daouda
    Ghalit, Mohammed
    Ndi, Julius Nsami
    Martinez, Luisa M. Pastrana
    Ouahabi, Meriam El
    Ketcha, Joseph Mbadcam
    Gharibi, El Khadir
    ENVIRONMENTAL MONITORING AND ASSESSMENT, 2021, 193 (08)