An on-line method for segmentation and identification of non-stationary time series

被引:12
|
作者
Kohlmorgen, J [1 ]
Lemm, S [1 ]
机构
[1] German Natl Res Ctr Informat Technol, Inst Comp Architecture & Software Technol, D-12489 Berlin, Germany
关键词
D O I
10.1109/NNSP.2001.943116
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a method for the analysis of non-stationary time series from dynamical systems that switch between multiple operating modes. In contrast to other approaches, our method processes the data incrementally and without any training of internal parameters. It straightaway performs an unsupervised segmentation and classification of the data on-the-fly. In many cases it even allows to process incoming data in real-time. The main idea of the approach is to track and segment changes of the probability density of the data in a sliding window on the incoming data stream. An application to a switching dynamical system demonstrates the potential usefulness of the algorithm in a broad range of applications.
引用
收藏
页码:113 / 122
页数:10
相关论文
共 50 条
  • [1] On-Line Structural Breaks Estimation for Non-stationary Time Series Models
    Cheng Xiaogang
    Li Bo
    Chen Qimei
    CHINA COMMUNICATIONS, 2011, 8 (07) : 95 - 104
  • [2] A non-stationary signal correlator for on-line transit time estimation
    Tambouratzis, T
    Antonopoulos-Domis, M
    ANNALS OF NUCLEAR ENERGY, 2002, 29 (11) : 1299 - 1313
  • [3] On-line compensation for non-stationary noise
    Barreaud, V
    Illina, I
    Fohr, D
    ASRU'03: 2003 IEEE WORKSHOP ON AUTOMATIC SPEECH RECOGNITION AND UNDERSTANDING ASRU '03, 2003, : 375 - 380
  • [4] A simulation method for finite non-stationary time series
    Cai, Yuzhi
    Huang, Jie
    Tang, Yu
    Zhou, Guixia
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2014, 84 (07) : 1563 - 1579
  • [5] ″On-Line″ Identification of Non-stationary Processes by a Trend Model - 2.
    Shahata, M.
    Regelungstechnik und Prozess-Datenverarbeitung, 1972, 20 (03): : 108 - 113
  • [6] Empirical Identification of Non-stationary Dynamics in Time Series of Recordings
    Balaguer-Ballester, Emili
    Tabas-Diaz, Alejandro
    Budka, Marcin
    ADAPTIVE AND INTELLIGENT SYSTEMS, ICAIS 2014, 2014, 8779 : 142 - 151
  • [7] Adaptive and on-line learning in non-stationary environments
    Lughofer, Edwin
    Sayed-Mouchaweh, Moamar
    EVOLVING SYSTEMS, 2015, 6 (02) : 75 - 77
  • [8] On-line color calibration in non-stationary environments
    Anzani, Federico
    Bosisio, Daniele
    Matteucci, Matteo
    Sorrenti, Domenico G.
    ROBOCUP 2005: ROBOT SOCCER WORLD CUP IX, 2006, 4020 : 396 - 407
  • [9] Classification of non-stationary time series
    Krzemieniewska, Karolina
    Eckley, Idris A.
    Fearnhead, Paul
    STAT, 2014, 3 (01): : 144 - 157
  • [10] Exact smoothing for stationary and non-stationary time series
    Casals, J
    Jerez, M
    Sotoca, S
    INTERNATIONAL JOURNAL OF FORECASTING, 2000, 16 (01) : 59 - 69