(q,h)-analogue of Newton's binomial formula (vol 31, pg L751, 1998)

被引:24
作者
Benaoum, HB [1 ]
机构
[1] Univ Mainz, Inst Phys, D-55099 Mainz, Germany
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1999年 / 32卷 / 10期
关键词
D O I
10.1088/0305-4470/32/10/019
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this letter, the (q, h)-analogue of Newton's binomial formula is obtained in the (q, h)-deformed quantum plane which reduces for h = 0 to the q-analogue. For (q = 1, h = 0), this is just the usual one as it should be. Moreover, the h-analogue is recovered for q = 1. Some properties of the (q, h)-binomial coefficients are also given. This result will contribute to an introduction of the (q, h)-analogue of the well-known functions, (q, h)-special functions and (q, h)-deformed analysis.
引用
收藏
页码:2037 / 2040
页数:4
相关论文
共 5 条
  • [1] h analogue of Newton's binomial formula
    Benaoum, HB
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (46): : L751 - L754
  • [2] Non-commutative geometry of the h-deformed quantum plane
    Cho, S
    Madore, J
    Park, KS
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (11): : 2639 - 2654
  • [3] OPERATOR METHODS FOR Q-IDENTITIES
    CIGLER, J
    [J]. MONATSHEFTE FUR MATHEMATIK, 1979, 88 (02): : 87 - 105
  • [4] Exton H, 1983, q-Hypergeometric functions and applications
  • [5] SCHUTZENBERGER MP, 1953, CR HEBD ACAD SCI, V236, P352