Evidence of recent interkingdom horizontal gene transfer between bacteria and Candida parapsilosis

被引:48
作者
Fitzpatrick, David A. [1 ]
Logue, Mary E. [1 ]
Butler, Geraldine [1 ]
机构
[1] Univ Coll Dublin, Conway Inst, Sch Biomol & Biomed Sci, Dublin 4, Ireland
基金
爱尔兰科学基金会; 美国国家科学基金会;
关键词
D O I
10.1186/1471-2148-8-181
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
Background: To date very few incidences of interdomain gene transfer into fungi have been identified. Here, we used the emerging genome sequences of Candida albicans WO-1, Candida tropicalis, Candida parapsilosis, Clavispora lusitaniae, Pichia guilliermondii, and Lodderomyces elongisporus to identify recent interdomain HGT events. We refer to these as CTG species because they translate the CTG codon as serine rather than leucine, and share a recent common ancestor. Results: Phylogenetic and syntenic information infer that two C. parapsilosis genes originate from bacterial sources. One encodes a putative proline racemase (PR). Phylogenetic analysis also infers that there were independent transfers of bacterial PR enzymes into members of the Pezizomycotina, and protists. The second HGT gene in C. parapsilosis belongs to the phenazine F (PhzF) superfamily. Most CTG species also contain a fungal PhzF homolog. Our phylogeny suggests that the CTG homolog originated from an ancient HGT event, from a member of the proteobacteria. An analysis of synteny suggests that C. parapsilosis has lost the endogenous fungal form of PhzF, and subsequently reacquired it from a proteobacterial source. There is evidence that Schizosaccharomyces pombe and Basidiomycotina also obtained a PhzF homolog through HGT. Conclusion: Our search revealed two instances of well-supported HGT from bacteria into the CTG clade, both specific to C. parapsilosis. Therefore, while recent interkingdom gene transfer has taken place in the CTG lineage, its occurrence is rare. However, our analysis will not detect ancient gene transfers, and we may have underestimated the global extent of HGT into CTG species.
引用
收藏
页数:15
相关论文
共 75 条
[1]   Gapped BLAST and PSI-BLAST: a new generation of protein database search programs [J].
Altschul, SF ;
Madden, TL ;
Schaffer, AA ;
Zhang, JH ;
Zhang, Z ;
Miller, W ;
Lipman, DJ .
NUCLEIC ACIDS RESEARCH, 1997, 25 (17) :3389-3402
[2]   Lateral gene transfer in eukaryotes [J].
Andersson, JO .
CELLULAR AND MOLECULAR LIFE SCIENCES, 2005, 62 (11) :1182-1197
[3]   Phylogenetic analyses of diplomonad genes reveal frequent lateral gene transfers affecting eukaryotes [J].
Andersson, JO ;
Sjögren, ÅM ;
Davis, LAM ;
Embley, TM ;
Roger, AJ .
CURRENT BIOLOGY, 2003, 13 (02) :94-104
[4]  
[Anonymous], UNIPROT DATABASE
[5]   GeneWise and genomewise [J].
Birney, E ;
Clamp, M ;
Durbin, R .
GENOME RESEARCH, 2004, 14 (05) :988-995
[6]   Structure and function of the phenazine biosynthetic protein PhzF from Pseudomonas fluorescens [J].
Blankenfeldt, W ;
Kuzin, AP ;
Skarina, T ;
Korniyenko, Y ;
Tong, L ;
Bayer, P ;
Janning, P ;
Thomashow, LS ;
Mavrod, DV .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (47) :16431-16436
[7]   Evolutionary relationships among virulence-associated histidine kinases [J].
Brinkman, FSL ;
MacFarlane, ELA ;
Warrener, P ;
Hancock, REW .
INFECTION AND IMMUNITY, 2001, 69 (08) :5207-5211
[8]   A comparison of three fission yeast mitochondrial genomes [J].
Bullerwell, CE ;
Leigh, J ;
Forget, L ;
Lang, BF .
NUCLEIC ACIDS RESEARCH, 2003, 31 (02) :759-768
[9]   Crystal structure, catalytic mechanism, and mitogenic properties of Trypanosoma cruzi proline racemase [J].
Buschiazzo, A ;
Goytia, M ;
Schaeffer, F ;
Degrave, W ;
Shepard, W ;
Grégoire, C ;
Chamond, N ;
Cosson, A ;
Berneman, A ;
Coatnoan, N ;
Alzari, PM ;
Minoprio, P .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (06) :1705-1710
[10]   PURIFICATION AND MECHANISM OF ACTION OF PROLINE RACEMASE [J].
CARDINALE, GJ ;
ABELES, RH .
BIOCHEMISTRY, 1968, 7 (11) :3970-+