TIME INTEGRATION OF TENSOR TRAINS

被引:143
作者
Lubich, Christian [1 ]
Oseledets, Ivan V. [2 ,3 ]
Vandereycken, Bart [4 ]
机构
[1] Univ Tubingen, Math Inst, D-72076 Tubingen, Germany
[2] Skolkovo Inst Sci & Technol, Odintsovsky Dist 143025, Moscow Region, Russia
[3] Inst Numer Math, Moscow 119333, Russia
[4] Princeton Univ, Dept Math, Princeton, NJ 08544 USA
基金
俄罗斯科学基金会;
关键词
tensor train; matrix product state; low-rank approximation; time-varying tensors; tensor differential equations; splitting integrator; LOW-RANK APPROXIMATION; HARTREE MCTDH METHOD; PROPAGATING WAVEPACKETS; FORMAT; REPRESENTATION; OPTIMIZATION; DYNAMICS; MATRICES; OPERATOR;
D O I
10.1137/140976546
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A robust and efficient time integrator for dynamical tensor approximation in the tensor train or matrix product state format is presented. The method is based on splitting the projector onto the tangent space of the tensor manifold. The algorithm can be used for updating time-dependent tensors in the given data-sparse tensor train/matrix product state format and for computing an approximate solution to high-dimensional tensor differential equations within this data-sparse format. The formulation, implementation, and theoretical properties of the proposed integrator are studied, and numerical experiments with problems from quantum molecular dynamics and with iterative processes in the tensor train format are included.
引用
收藏
页码:917 / 941
页数:25
相关论文
共 31 条
[1]  
Absil PA, 2008, OPTIMIZATION ALGORITHMS ON MATRIX MANIFOLDS, P1
[2]   The multiconfiguration time-dependent Hartree (MCTDH) method:: a highly efficient algorithm for propagating wavepackets [J].
Beck, MH ;
Jäckle, A ;
Worth, GA ;
Meyer, HD .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2000, 324 (01) :1-105
[3]   A NOVEL DISCRETE VARIABLE REPRESENTATION FOR QUANTUM-MECHANICAL REACTIVE SCATTERING VIA THE S-MATRIX KOHN METHOD [J].
COLBERT, DT ;
MILLER, WH .
JOURNAL OF CHEMICAL PHYSICS, 1992, 96 (03) :1982-1991
[4]  
Hackbusch W., 2012, Tensor spaces and numerical tensor calculus
[5]   Approximate iterations for structured matrices [J].
Hackbusch, Wolfgang ;
Khoromskij, Boris N. ;
Tyrtyshnikov, Eugene E. .
NUMERISCHE MATHEMATIK, 2008, 109 (03) :365-383
[6]   Post-matrix product state methods: To tangent space and beyond [J].
Haegeman, Jutho ;
Osborne, Tobias J. ;
Verstraete, Frank .
PHYSICAL REVIEW B, 2013, 88 (07)
[7]  
Hairer E., 2006, Geometric numerical integration, Vsecond, DOI [DOI 10.1007/3-540-30666-88, 10.1007/3-540-30666-8]
[8]   On Krylov subspace approximations to the matrix exponential operator [J].
Hochbruck, M ;
Lubich, C .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1997, 34 (05) :1911-1925
[9]  
Hochbruck M, 2010, ACTA NUMER, V19, P209, DOI 10.1017/S0962492910000048
[10]   THE ALTERNATING LINEAR SCHEME FOR TENSOR OPTIMIZATION IN THE TENSOR TRAIN FORMAT [J].
Holtz, Sebastian ;
Rohwedder, Thorsten ;
Schneider, Reinhold .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2012, 34 (02) :A683-A713