A new expression for crack opening stress determined based on maximum crack opening displacement under tension-compression cyclic loading

被引:2
作者
Chen, J. J. [1 ]
You, M. [1 ]
Huang, Y. [1 ]
机构
[1] Dalian Univ Technol, Sch Naval Architecture, Dalian 116024, Liaoning, Peoples R China
基金
中国国家自然科学基金;
关键词
compressive load effect; crack opening stress; finite element analysis; maximum crack opening displacement; tension-compression loading; FINITE-ELEMENT-ANALYSIS; PROPAGATION MODEL; GROWTH-BEHAVIOR; R-RATIO; CLOSURE;
D O I
10.1111/ffe.12637
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
The maximum crack opening displacement is introduced to investigate the effect of compressive loads on crack opening stress in tension-compression loading cycles. Based on elastic-plastic finite element analysis of centre cracked finite plate and accounting for the effects of crack geometry size, Young's modulus, yield stress and strain hardening, the explicit expression of crack opening stress versus maximum crack opening displacement is presented. This model considers the effect of compressive loads on crack opening stress and avoids adopting fracture parameters around crack tip. Besides, it could be applied in a wide range of materials and load conditions. Further studies show that experimental results of da/dN-K curves with negative stress ratios could be condensed to a single curve using this crack opening stress model.
引用
收藏
页码:29 / 40
页数:12
相关论文
共 52 条
[1]   Macromechanics study of stable fatigue crack growth in Al-Cu-Li-Mg-Ag alloy [J].
Akhtar, N. ;
Wu, S. J. .
FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES, 2017, 40 (02) :233-244
[2]   Numerical simulation of plasticity induced crack closure: Identification and discussion of parameters [J].
Antunes, F. V. ;
Rodrigues, D. M. .
ENGINEERING FRACTURE MECHANICS, 2008, 75 (10) :3101-3120
[3]   Effect of compressive loads on plasticity induced crack closure [J].
Antunes, F. V. ;
Correia, L. ;
Camas, D. ;
Branco, R. .
THEORETICAL AND APPLIED FRACTURE MECHANICS, 2015, 80 :193-204
[4]   Empirical model for plasticity-induced crack closure based on Kmax and K [J].
Antunes, F. V. ;
Chegini, A. G. ;
Camas, D. ;
Correia, L. .
FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES, 2015, 38 (08) :983-996
[5]  
AUd Koning., 1981, FRACTURE MECH 13 C A, P63, DOI DOI 10.1520/STP743-EB
[6]   Reconsiderations of fatigue crack growth at negative stress ratios: Finite element analyses [J].
Benz, C. ;
Sander, M. .
ENGINEERING FRACTURE MECHANICS, 2015, 145 :98-114
[7]   Proposal of a fatigue crack propagation model taking into account crack closure effects using a modified CCS crack growth model [J].
Blason, S. ;
Correia, J. A. F. O. ;
Apetre, N. ;
Arcari, A. ;
De Jesus, A. M. P. ;
Moreira, P. ;
Fernandez-Canteli, A. .
XV PORTUGUESE CONFERENCE ON FRACTURE, PCF 2016, 2016, 1 :110-117
[8]   Modeling fatigue crack growth behavior in rolled AZ31 magnesium alloy using CTOD based strip yield modeling [J].
Cauthen, Cole ;
Daniewicz, Steven R. ;
Shamsaei, Nima .
INTERNATIONAL JOURNAL OF FATIGUE, 2017, 96 :196-207
[9]   A study on evaluation method of crack tip reverse plastic zone size for the center cracked steel plate model under tension-compression cyclic loading [J].
Chen, Jingjie ;
Huang, Yi ;
Dong, Leilei ;
Li, Yugang .
ENGINEERING FRACTURE MECHANICS, 2015, 133 :138-151
[10]   Modified CCS fatigue crack growth model for the AA2019-T851 based on plasticity-induced crack-closure [J].
Correia, J. A. F. O. ;
Blason, S. ;
Arcari, A. ;
Calvente, M. ;
Apetre, N. ;
Moreira, P. M. G. P. ;
De Jesus, A. M. P. ;
Canteli, A. F. .
THEORETICAL AND APPLIED FRACTURE MECHANICS, 2016, 85 :26-36