On (C,1) summability for Vilenkin-like systems

被引:22
作者
Gát, G [1 ]
机构
[1] Bessenyei Coll, Dept Math, H-4400 Nyiregyhaza, Hungary
关键词
D O I
10.4064/sm144-2-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a common generalization of the Walsh system, Vilenkin system, the character system of the group of 2-adic (m-adic) integers, the product system of normalized coordinate functions for continuous irreducible unitary representations of the coordinate groups of noncommutative Vilenkin groups, the UDMD product systems (defined by F. Schipp) and some other systems. We prove that for integrable functions sigma (n)f --> f (n --> infinity) a.e., where rho (n)f is the nth (C, 1) mean of f. (For the character system of the group of m-adic integers, this proves a more than 20 years did conjecture of M. H. Taibleson [24, p. 114].) Define the maximal operator sigma *f := sup(n) /sigma (n)f/ we prove that sigma* is of type (p,p) for all 1 < p < infinity and of weak type (1, 1). Moreover, //sigma *f//(1) less than or equal to c//f//(H), where H is the Hardy space.
引用
收藏
页码:101 / 120
页数:20
相关论文
共 27 条
[1]  
Agaev G. N., 1981, Multiplicative Systems of Functions and Harmonic Analysis on Zero-Dimensional Groups
[2]   ON THE EXISTENCE OF CERTAIN SINGULAR INTEGRALS [J].
CALDERON, AP ;
ZYGMUND, A .
ACTA MATHEMATICA, 1952, 88 (03) :85-139
[6]   On the almost everywhere convergence of Fejer means of functions on the group of 2-adic integers [J].
Gat, G .
JOURNAL OF APPROXIMATION THEORY, 1997, 90 (01) :88-96
[7]  
GAT G, 1996, ANAL MATH, V22, P13
[8]  
GAT G, 1995, ACTA SCI MATH SZEGED, V60, P311
[9]  
HEWITT E, 1963, ABSTR HARM AN, V1
[10]  
Marcinkiewicz J., 1937, ANN SOC POL MATH, V16, P85