Sharp well-posedness for the Benjamin equation

被引:19
作者
Chen, W. [2 ]
Guo, Z. [1 ]
Xiao, J. [3 ]
机构
[1] Peking Univ, Sch Math Sci, LMAM, Beijing 100871, Peoples R China
[2] Inst Appl Phys & Computat Math, Beijing 100088, Peoples R China
[3] Mem Univ Newfoundland, Dept Math & Stat, St John, NF A1C 5S7, Canada
关键词
Benjamin equation; Bilinear estimate; Bourgain space; Local and global well-posedness; INITIAL-VALUE PROBLEM; DE-VRIES EQUATION; ONO-EQUATION; DISPERSIVE EQUATIONS; BILINEAR ESTIMATE; LOW-REGULARITY; SOLITARY-WAVE; ILL-POSEDNESS; KDV EQUATION; SPACE;
D O I
10.1016/j.na.2011.06.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Having the ill-posedness in the range s < -3/4 of the Cauchy problem for the Benjamin equation with an initial H(s)(R) data, we prove that the already-established local well-posedness in the range s > -3/4 of this initial value problem is extendable to s = -3/4 and also that such a well-posed property is globally valid for s is an element of [-3/4, infinity). (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:6209 / 6230
页数:22
相关论文
共 29 条
[1]  
Albert JP, 1999, SIAM J APPL MATH, V59, P2139
[2]  
Angulo J., 1999, J DIFFER EQUATIONS, V152, P136, DOI DOI 10.1006/jdeq.1998.3525
[3]   Sharp well-posedness and ill-posedness results for a quadratic non-linear Schrodinger equation [J].
Bejenaru, I ;
Tao, T .
JOURNAL OF FUNCTIONAL ANALYSIS, 2006, 233 (01) :228-259
[4]   A NEW KIND OF SOLITARY WAVE [J].
BENJAMIN, TB .
JOURNAL OF FLUID MECHANICS, 1992, 245 :401-411
[5]  
Bourgain J., 1993, Geom. Funct. Anal., V3, P107
[6]  
Bourgain J., 1997, Selecta Math. (N.S.), V3, P115
[7]  
Bourgain J., 1993, The KdV equations, GAGA, V3, P209, DOI 10.1007/BF01895688
[8]   On well-posedness for the Benjamin-Ono equation [J].
Burq, Nicolas ;
Planchon, Fabrice .
MATHEMATISCHE ANNALEN, 2008, 340 (03) :497-542
[9]  
Chen Hongqiu, 1998, Adv. Differential Equations, V3, P51
[10]   A Sharp Bilinear Estimate for the Bourgain-Type Space with Application to the Benjamin Equation [J].
Chen, Wengu ;
Xiao, Jie .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2010, 35 (10) :1739-1762