Polydimethylsiloxane tissue-mimicking phantoms with tunable optical properties

被引:17
|
作者
Goldfain, Aaron M. [1 ]
Lemaillet, Paul [1 ,3 ]
Allen, David W. [1 ]
Briggman, Kimberly A. [2 ]
Hwang, Jeeseong [2 ]
机构
[1] NIST, Sensor Sci Div, Gaithersburg, MD 20899 USA
[2] NIST, Appl Phys Div, Boulder, CO 80309 USA
[3] US FDA, Div Imaging Diagnost & Software Reliabil, Off Sci & Engn Labs, Ctr Devices & Radiol Hlth, 10903 New Hampshire Ave, Silver Spring, MD USA
关键词
tissue-mimicking phantom; polydimethylsiloxane; integrating sphere; scattering coefficient spectrum; absorption coefficient spectrum; OPTIMIZED INTEGRATING SPHERE; PRECISE DETERMINATION; INDIA INK; ABSORPTION; CONTRAST;
D O I
10.1117/1.JBO.27.7.074706
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Significance: The polymer, polydimethylsiloxane (PDMS), has been increasingly used to make tissue simulating phantoms due to its excellent processability, durability, flexibility, and limited tunability of optical, mechanical, and thermal properties. We report on a robust technique to fabricate PDMS-based tissue-mimicking phantoms where the broad range of scattering and absorption properties are independently adjustable in the visible- to near-infrared wavelength range from 500 to 850 nm. We also report on an analysis method to concisely quantify the phantoms' broadband characteristics with four parameters. Aim: We report on techniques to manufacture and characterize solid tissue-mimicking phantoms of PDMS polymers. Tunability of the absorption (mu(a) ( lambda ) ) and reduced scattering coefficient spectra (mu s '(lambda)) in the wavelength range of 500 to 850 nm is demonstrated by adjusting the concentrations of light absorbing carbon black powder (CBP) and light scattering titanium dioxide powder (TDP) added into the PDMS base material. Approach: The mu(a) ( lambda ) and mu s '(lambda) of the phantoms were obtained through measurements with a broadband integrating sphere system and by applying an inverse adding doubling algorithm. Analyses of mu(a) ( lambda ) and mu s '(lambda) of the phantoms, by fitting them to linear and power law functions, respectively, demonstrate that independent control of mu(a) ( lambda ) and mu s '(lambda) is possible by systematically varying the concentrations of CBP and TDP. Results: Our technique quantifies the phantoms with four simple fitting parameters enabling a concise tabulation of their broadband optical properties as well as comparisons to the optical properties of biological tissues. We demonstrate that, to a limited extent, the scattering properties of our phantoms mimic those of human tissues of various types. A possible way to overcome this limitation is demonstrated with phantoms that incorporate polystyrene microbead scatterers. Conclusions: Our manufacturing and analysis techniques may further promote the application of PDMS-based tissue-mimicking phantoms and may enable robust quality control and quality checks of the phantoms. (C) The Authors. Published by SPIE under a Creative Commons Attribution 4.0 International License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Polydimethylsiloxane tissue-mimicking phantoms for quantitative optical medical imaging standards
    Hwang, Jeeseong
    Kim, Hyun-Jin
    Lemaillet, Paul
    Wabnitz, Heidrun
    Grosenick, Dirk
    Yang, Lin
    Gladytz, Thomas
    McClatchy, David
    Allen, David
    Briggman, Kimberly
    Pogue, Brian
    DESIGN AND QUALITY FOR BIOMEDICAL TECHNOLOGIES X, 2017, 10056
  • [2] Optical properties of PlatSil SiliGlass tissue-mimicking phantoms
    Naglic, Peter
    Zelinskyi, Yevhen
    Rogelj, Luka
    Stergar, Jost
    Milanic, Matija
    Novak, Jure
    Kumperscak, Borut
    Burmen, Miran
    BIOMEDICAL OPTICS EXPRESS, 2020, 11 (07) : 3753 - 3768
  • [3] Multiwavelength tissue-mimicking phantoms with tunable vessel pulsation
    Jenne, Sophie
    Zappe, Hans
    JOURNAL OF BIOMEDICAL OPTICS, 2023, 28 (04)
  • [4] MR relaxation properties of tissue-mimicking phantoms
    Antoniou, Anastasia
    Damianou, Christakis
    ULTRASONICS, 2022, 119
  • [5] Tissue-mimicking phantoms for biomedical applications
    Sieryi, Oleksii
    Popov, Alexey
    Kalchenko, Vyacheslav
    Bykov, Alexander
    Meglinski, Igor
    TISSUE OPTICS AND PHOTONICS, 2020, 11363
  • [6] A New Tissue-mimicking Material for Phantoms
    Sato, Kazuishi
    Yoshida, Tomoji
    Kondo, Toshio
    Taniguchi, Masahiko
    Yasukawa, Kazuhiro
    2015 IEEE INTERNATIONAL ULTRASONICS SYMPOSIUM (IUS), 2015,
  • [7] Assessment of the acoustic properties of common tissue-mimicking test phantoms
    Browne, JE
    Ramnarine, KV
    Watson, AJ
    Hoskins, PR
    ULTRASOUND IN MEDICINE AND BIOLOGY, 2003, 29 (07): : 1053 - 1060
  • [8] OPTICAL/ACOUSTIC RADIATION IMAGING IN TISSUE-MIMICKING BLADDER WALL PHANTOMS
    Ejofodomi, O'tega A.
    Zderic, Vesna
    Zara, Jason M.
    2011 8TH IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: FROM NANO TO MACRO, 2011, : 524 - 527
  • [9] Tissue-mimicking materials for elastography phantoms: A review
    Cao, Yanping
    Li, Guo-Yang
    Zhang, Xiao
    Liu, Yan-Lin
    EXTREME MECHANICS LETTERS, 2017, 17 : 62 - 70
  • [10] Optical properties of PlatSil SiliGlass tissue-mimicking phantoms (vol 11, pg 3753, 2020)
    Naglic, Peter
    Zelinskyi, Yevhen
    Rogelj, Luka
    Stergar, Jost
    Milanic, Matija
    Novak, Jure
    Kumperscak, Borut
    Burmen, Miran
    BIOMEDICAL OPTICS EXPRESS, 2020, 11 (08): : 4275 - 4275