The effects of coal dust concentrations and particle sizes on the minimum auto-ignition temperature of a coal dust cloud

被引:21
|
作者
Ajrash, Mohammed Jabbar [1 ]
Zanganeh, Jafar [1 ]
Moghtaderi, Behdad [1 ]
机构
[1] Univ Newcastle, Chem Engn, Newcastle, NSW 2308, Australia
关键词
coal dust; coal ignition; flash fire; ventilation air methane; volatile matter; VENTILATION AIR METHANE; HYBRID FUEL; CORK DUST; EXPLOSIONS; EXPLOSIBILITY; MIXTURES; PARAMETERS; CHAMBER; HOT; COMBUSTION;
D O I
10.1002/fam.2437
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Flash fires and explosions in areas containing an enriched combustible dust atmosphere are a major safety concern in industrial processing. An experimental study was conducted to analyse the effects of atmospheric coal dust particle sizes and concentrations on the minimum autoignition temperature (MAIT) of a dust cloud. Two different coal samples from Australian coal mines were used. The coal dust particles were prepared and sized in 3 ranges, of below 74 mu m, 74 to 125 mu m and 125 to 212 mu m, by using a series of sieves and a sieve shaker. A humidifier was used to increase the moisture content of the particles to the required level. All the experiments were conducted in accordance with the ASTM E1491-06 method in a calibrated Goldbert-Greenwald furnace. The results from this study indicate that coal dust properties, such as the chemical nature (H/C), concentration, particle size (D-50), and moisture content, impact on the MAIT. For coal dust concentrations less than 1000 g.m(-3), the MAIT decreases with increasing coal dust concentrations. On the other hand, for low concentrations of 100 to 15 g.m(-3), the MAIT becomes more reliable for particle size D-50 rather than for volatile matters.
引用
收藏
页码:908 / 915
页数:8
相关论文
共 50 条
  • [1] Experimental investigation of the minimum auto-ignition temperature (MAIT) of the coal dust layer in a hot and humid environment
    Ajrash, Mohammed Jabbar
    Zanganeh, Jafar
    Moghtaderi, Behdad
    FIRE SAFETY JOURNAL, 2016, 82 : 12 - 22
  • [3] Effects of different factors on the minimum ignition temperature of the mixed dust cloud of coal and oil shale
    Liu, Hao
    Chen, Haiyan
    Zhang, Xingxu
    Hu, Yanwei
    Fan, Cheng
    JOURNAL OF LOSS PREVENTION IN THE PROCESS INDUSTRIES, 2019, 62
  • [4] Inhibiting effect of coal fly ash on minimum ignition temperature of coal dust clouds
    Yu, Hongkun
    Wang, Cheng
    Pang, Lei
    Cui, Yangyang
    Chen, Dongping
    JOURNAL OF LOSS PREVENTION IN THE PROCESS INDUSTRIES, 2019, 61 : 24 - 29
  • [5] Minimum Ignition Temperature of layer and cloud dust mixtures
    Danzi, Enrico
    Marmo, Luca
    Riccio, Daniela
    JOURNAL OF LOSS PREVENTION IN THE PROCESS INDUSTRIES, 2015, 36 : 328 - 336
  • [6] The Minimum Ignition Energy of Coal Dust in an Oxygen Enriched Atmosphere
    Norman, Frederik
    Berghmans, Jan
    Verplaetsen, Filip
    LP2013 - 14TH SYMPOSIUM ON LOSS PREVENTION AND SAFETY PROMOTION IN THE PROCESS INDUSTRIES, VOLS I AND II, 2013, 31 : 739 - 744
  • [7] Experimental study on the minimum ignition temperature and combustion kinetics of coal dust/air mixtures
    Xu, Sen
    Liu, Junfeng
    Cao, Wei
    Li, Yuyan
    Cao, Weiguo
    POWDER TECHNOLOGY, 2017, 317 : 154 - 161
  • [8] Experimental investigation on effects of particle size, dust concentration and dust-dispersion-air pressure on minimum ignition temperature and combustion process of coal dust clouds in a G-G furnace
    Mishra, Devi Prasad
    Azam, Sikandar
    FUEL, 2018, 227 : 424 - 433
  • [9] Risk evaluation of coal spontaneous combustion on the basis of auto-ignition temperature
    Zhang, Yutao
    Liu, Yurui
    Shi, Xueqiang
    Yang, Chaoping
    Wang, Weifeng
    Li, Yaqing
    FUEL, 2018, 233 : 68 - 76
  • [10] Experimental and numerical study of coal dust ignition by a hot particle
    Glushkov, Dmitrii O.
    Kuznetsov, Geniy V.
    Strizhak, Pavel A.
    APPLIED THERMAL ENGINEERING, 2018, 133 : 774 - 784