Long-distance behavior of temperature correlation functions in the one-dimensional Bose gas

被引:33
作者
Kozlowski, K. K. [1 ]
Maillet, J. M. [2 ]
Slavnov, N. A. [3 ]
机构
[1] DESY, D-2000 Hamburg, Germany
[2] ENS Lyon, Phys Lab, CNRS, Lyon, France
[3] VA Steklov Math Inst, Moscow 117333, Russia
关键词
correlation functions; quantum integrability (Bethe ansatz); thermodynamic Bethe ansatz; quantum gases; IMPENETRABLE BOSONS; CORRELATION LENGTH; THERMODYNAMICS; 6-VERTEX; EQUATION; CHAIN; TBA;
D O I
10.1088/1742-5468/2011/03/P03018
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We describe a Bethe ansatz-based method to derive, starting from a multiple integral representation, the long-distance asymptotic behavior at finite temperature of the density-density correlation function in the interacting one-dimensional Bose gas. We compute the correlation lengths in terms of solutions of non-linear integral equations of the thermodynamic Bethe ansatz type. Finally, we establish a connection between the results obtained in our approach and the correlation lengths stemming from the quantum transfer matrix method.
引用
收藏
页数:38
相关论文
共 48 条
[1]  
AIZENBERG IA, 1978, AMS GRADUATE TEXTS M, V58
[2]  
[Anonymous], 1983, FUNCTIONAL INTEGRALS
[3]   INFINITE CONFORMAL SYMMETRY IN TWO-DIMENSIONAL QUANTUM-FIELD THEORY [J].
BELAVIN, AA ;
POLYAKOV, AM ;
ZAMOLODCHIKOV, AB .
NUCLEAR PHYSICS B, 1984, 241 (02) :333-380
[4]  
BOGOLIUBOV NM, 1985, LECT NOTES PHYS, V242, P220
[5]   CORRELATION LENGTH OF THE ONE-DIMENSIONAL BOSE-GAS [J].
BOGOLIUBOV, NM ;
KOREPIN, VE .
NUCLEAR PHYSICS B, 1985, 257 (06) :766-778
[6]   TEMPERATURE-DEPENDENCE OF THE CORRELATION LENGTH IN A ONE-DIMENSIONAL BOSE-GAS [J].
BOGOLYUBOV, NM ;
KOREPIN, VE .
THEORETICAL AND MATHEMATICAL PHYSICS, 1985, 64 (01) :708-715
[7]   CORRELATION-FUNCTIONS OF ONE-DIMENSIONAL BOSE-GAS IN THERMODYNAMIC-EQUILIBRIUM [J].
BOGOLYUBOV, NM ;
KOREPIN, VE .
THEORETICAL AND MATHEMATICAL PHYSICS, 1984, 60 (02) :808-814
[8]  
Cardy J. L., 1996, Cambridge lecture notes in physics
[9]   CONFORMAL-INVARIANCE AND UNIVERSALITY IN FINITE-SIZE SCALING [J].
CARDY, JL .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1984, 17 (07) :L385-L387
[10]   OPERATOR CONTENT OF TWO-DIMENSIONAL CONFORMALLY INVARIANT THEORIES [J].
CARDY, JL .
NUCLEAR PHYSICS B, 1986, 270 (02) :186-204