Riesz projection and bounded mean oscillation for Dirichlet series

被引:9
作者
Konyagin, Sergei [1 ]
Queffelec, Herve [2 ]
Saksman, Eero [3 ]
Seip, Kristian [4 ]
机构
[1] Steklov Inst Math, 8 Gubkin St, Moscow 119991, Russia
[2] Univ Lille Nord France, USTL, Lab Paul Painleve, UMR CNRS 8524, F-59655 Villeneuve Dascq, France
[3] Univ Helsinki, Dept Math & Stat, FI-00170 Helsinki, Finland
[4] Norwegian Univ Sci & Technol, Dept Math Sci, NO-7491 Trondheim, Norway
关键词
Dirichlet series; bounded mean oscillation; COMPOSITION OPERATORS; BLOCH FUNCTIONS; HILBERT-SPACE; INEQUALITY; CONSTANTS; NORMS;
D O I
10.4064/sm200601-22-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that the norm of the Riesz projection from L-infinity(T-n) to L-p(T-n) is 1 for all n >= 1 only if p <= 2, thus solving a problem posed by Marzo and Seip in 2011. This shows that H-p(T-infinity) does not contain the dual space of H-1(T-infinity) for any p > 2. We then note that the dual of H-1 (T-infinity) contains, via the Bohr lift, the space of Dirichlet series in BMOA of the right half-plane. We give several conditions showing how this BMOA space relates to other spaces of Dirichlet series. Finally, relating the partial sum operator for Dirichlet series to Riesz projection on T, we compute its L-p norm when 1 < p < infinity, and we use this result to show that the L-infinity norm of the N th partial sum of a bounded Dirichlet series over d-smooth numbers is of order log log N.
引用
收藏
页码:121 / 150
页数:30
相关论文
共 47 条
[41]  
Queffelec M, 2013, DIOPHANTINE APPROXIM, V2
[42]  
Rudin W., 2017, FOURIER ANAL GROUPS
[43]   Integral means and boundary limits of Dirichlet series [J].
Saksman, Eero ;
Seip, Kristian .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2009, 41 :411-422
[44]  
SELBERG A., 1954, J INDIAN MATH SOC, V18, P83
[45]  
SLEDD WT, 1981, MICH MATH J, V28, P259
[46]   AN H-1 MULTIPLIER THEOREM [J].
SLEDD, WT ;
STEGENGA, DA .
ARKIV FOR MATEMATIK, 1981, 19 (02) :265-270
[47]  
Wilson BM, 1923, P LOND MATH SOC, V21, P235