Twin solutions to singular semipositone problems

被引:27
作者
Liu, YS [1 ]
机构
[1] Shandong Normal Univ, Dept Math, Jinan 250014, Peoples R China
关键词
multiple positive solutions; singular semipositone problem; fixed point index; cone;
D O I
10.1016/S0022-247X(03)00478-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, by a specially constructed cone and the fixed point index theory, we investigate the existence of multiple positive solutions for the following singular semipositone problem: {y" + lambdaf(t, y) = 0, t epsilon (0, 1)}, {y(0) = y(1) = 0}. The nonlinear term f(t, y) may be singular at t = 0, t = 1, and y = 0, also may be negative for some values of t and y; and lambda is a positive parameter. (C) 2003 Elsevier Inc. All rights reserved.
引用
收藏
页码:248 / 260
页数:13
相关论文
共 9 条
[1]   Twin solutions to singular Dirichlet problems [J].
Agarwal, RP ;
O'Regan, D .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1999, 240 (02) :433-445
[2]   A note on existence of nonnegative solutions to singular semi-positone problems [J].
Agarwal, RP ;
O'Regan, D .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1999, 36 (05) :615-622
[3]   Second-order initial value problems of singular type [J].
Agarwal, RP ;
O'Regan, D .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1999, 229 (02) :441-451
[4]   Existence results for superlinear semipositone BVP's [J].
Anuradha, V ;
Hai, DD ;
Shivaji, R .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 124 (03) :757-763
[5]  
DENG Z, 1990, INTRO BVP STUMIAN CO
[6]   ON THE EXISTENCE OF POSITIVE SOLUTIONS OF ORDINARY DIFFERENTIAL-EQUATIONS [J].
ERBE, LH ;
WANG, HY .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1994, 120 (03) :743-748
[7]  
GUO DJ, 1988, NONLINEAR PROBLEMS
[8]  
Liu XY, 1998, NONLINEAR ANAL-THEOR, V32, P633
[9]  
XU X, 2001, SOME RESULTS SINGULA