Deep Learning in the Prediction of Ischaemic Stroke Thrombolysis Functional Outcomes: A Pilot Study

被引:68
作者
Bacchi, Stephen [1 ]
Zerner, Toby [1 ,2 ]
Oakden-Rayner, Luke [1 ,2 ,3 ]
Kleinig, Timothy [1 ,2 ]
Patel, Sandy [1 ]
Jannes, Jim [1 ,2 ]
机构
[1] Royal Adelaide Hosp, Adelaide, SA, Australia
[2] Univ Adelaide, Fac Hlth & Med Sci, Adelaide, SA, Australia
[3] Univ Adelaide, Australian Inst Machine Learning, Adelaide, SA, Australia
关键词
Prognostication; Machine learning; Artificial intelligence; Convolutional neural network; RISK;
D O I
10.1016/j.acra.2019.03.015
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Rationale and Objectives: Intravenous thrombolysis decision-making and obtaining of consent would be assisted by an individualized risk-benefit ratio. Deep learning (DL) models may be able to assist with this patient selection. Materials and Methods: Clinical data regarding consecutive patients who received intravenous thrombolysis across two tertiary hospitals over a 7-year period were extracted from existing databases. The noncontrast computed tomography brain scans for these patients were then retrieved with hospital picture archiving and communication systems. Using a combination of convolutional neural networks (CNN) and artificial neural networks (ANN) several models were developed to predict either improvement in the National Institutes of Health Stroke Scale of >= 4 points at 24 hours ("NIHSS24"), or modified Rankin Scale 0-1 at 90 days ("mRS90"). The developed CNN and ANN were then applied to a test set. The THRIVE, HIAT, and SPAN-100 scores were also calculated for the patients in the test set and used to predict NIHSS24 and mRS90. Results: Data from 204 individuals were included in the project. The best performing DL model for prediction of mRS90 was a combination CNN + ANN based on clinical data and computed tomography brain (accuracy = 0.74, F1 score = 0.69). The best performing model for NIHSS24 prediction was also the combination CNN + ANN (accuracy = 0.71, F1 score = 0.74). Conclusion: DL models may aid in the prediction of functional thrombolysis outcomes. Further investigation with larger datasets and additional imaging sequences is indicated.
引用
收藏
页码:E19 / E23
页数:5
相关论文
共 13 条
[1]  
[Anonymous], J NEUROINTERVENTIONA
[2]   Validating a Predictive Model of Acute Advanced Imaging Biomarkers in Ischemic Stroke [J].
Bivard, Andrew ;
Levi, Christopher ;
Lin, Longting ;
Cheng, Xin ;
Aviv, Richard ;
Spratt, Neil J. ;
Lou, Min ;
Kleinig, Tim ;
O'Brien, Billy ;
Butcher, Kenneth ;
Zhang, Jingfen ;
Jannes, Jim ;
Dong, Qiang ;
Parsons, Mark .
STROKE, 2017, 48 (03) :645-650
[3]   Dermatologist-level classification of skin cancer with deep neural networks [J].
Esteva, Andre ;
Kuprel, Brett ;
Novoa, Roberto A. ;
Ko, Justin ;
Swetter, Susan M. ;
Blau, Helen M. ;
Thrun, Sebastian .
NATURE, 2017, 542 (7639) :115-+
[4]   THRIVE Score Predicts Ischemic Stroke Outcomes and Thrombolytic Hemorrhage Risk in VISTA [J].
Flint, Alexander C. ;
Faigeles, Bonnie S. ;
Cullen, Sean P. ;
Kamel, Hooman ;
Rao, Vivek A. ;
Gupta, Rishi ;
Smith, Wade S. ;
Bath, Philip M. ;
Donnan, Geoffrey A. .
STROKE, 2013, 44 (12) :3365-3369
[5]   Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs [J].
Gulshan, Varun ;
Peng, Lily ;
Coram, Marc ;
Stumpe, Martin C. ;
Wu, Derek ;
Narayanaswamy, Arunachalam ;
Venugopalan, Subhashini ;
Widner, Kasumi ;
Madams, Tom ;
Cuadros, Jorge ;
Kim, Ramasamy ;
Raman, Rajiv ;
Nelson, Philip C. ;
Mega, Jessica L. ;
Webster, R. .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2016, 316 (22) :2402-2410
[6]   Thrombolysis with alteplase 3 to 4.5 hours after acute ischemic stroke [J].
Hacke, Werner ;
Kaste, Markku ;
Bluhmki, Erich ;
Brozman, Miroslav ;
Davalos, Antoni ;
Guidetti, Donata ;
Larrue, Vincent ;
Lees, Kennedy R. ;
Medeghri, Zakaria ;
Machnig, Thomas ;
Schneider, Dietmar ;
von Kummer, Ruediger ;
Wahlgren, Nils ;
Toni, Danilo .
NEW ENGLAND JOURNAL OF MEDICINE, 2008, 359 (13) :1317-1329
[7]   Identifying Patients at High Risk for Poor Outcome After Intra-Arterial Therapy for Acute Ischemic Stroke [J].
Hallevi, Hen ;
Barreto, Andrew D. ;
Liebeskind, David S. ;
Morales, Miriam M. ;
Martin-Schild, Sheryl B. ;
Abraham, Anitha T. ;
Gadia, Jignesh ;
Saver, Jeffrey L. ;
Grotta, James C. ;
Savitz, Sean I. .
STROKE, 2009, 40 (05) :1780-1785
[8]   TISSUE-PLASMINOGEN ACTIVATOR FOR ACUTE ISCHEMIC STROKE [J].
MARLER, JR ;
BROTT, T ;
BRODERICK, J ;
KOTHARI, R ;
ODONOGHUE, M ;
BARSAN, W ;
TOMSICK, T ;
SPILKER, J ;
MILLER, R ;
SAUERBECK, L ;
JARRELL, J ;
KELLY, J ;
PERKINS, T ;
MCDONALD, T ;
RORICK, M ;
HICKEY, C ;
ARMITAGE, J ;
PERRY, C ;
THALINGER, K ;
RHUDE, R ;
SCHILL, J ;
BECKER, PS ;
HEATH, RS ;
ADAMS, D ;
REED, R ;
KLEI, M ;
HUGHES, S ;
ANTHONY, J ;
BAUDENDISTEL, D ;
ZADICOFF, C ;
RYMER, M ;
BETTINGER, I ;
LAUBINGER, P ;
SCHMERLER, M ;
MEIROSE, G ;
LYDEN, P ;
RAPP, K ;
BABCOCK, T ;
DAUM, P ;
PERSONA, D ;
BRODY, M ;
JACKSON, C ;
LEWIS, S ;
LISS, J ;
MAHDAVI, Z ;
ROTHROCK, J ;
TOM, T ;
ZWEIFLER, R ;
DUNFORD, J ;
ZIVIN, J .
NEW ENGLAND JOURNAL OF MEDICINE, 1995, 333 (24) :1581-1587
[9]   Prediction of Tissue Outcome and Assessment of Treatment Effect in Acute Ischemic Stroke Using Deep Learning [J].
Nielsen, Anne ;
Hansen, Mikkel Bo ;
Tietze, Anna ;
Mouridsen, Kim .
STROKE, 2018, 49 (06) :1394-1401
[10]   Reliability of the Modified Rankin Scale A Systematic Review [J].
Quinn, Terence J. ;
Dawson, Jesse ;
Walters, Matthew R. ;
Lees, Kennedy R. .
STROKE, 2009, 40 (10) :3393-3395