Simulating quantum many-body dynamics on a current digital quantum computer

被引:238
作者
Smith, Adam [1 ,2 ]
Kim, M. S. [1 ]
Pollmann, Frank [2 ]
Knolle, Johannes [1 ]
机构
[1] Imperial Coll London, Blackett Lab, London SW7 2AZ, England
[2] Tech Univ Munich, Dept Phys, T42,James Franck Str 1, D-85748 Garching, Germany
基金
欧洲研究理事会;
关键词
LATTICE GAUGE-THEORIES; LOCALIZATION; PHYSICS; ATOMS;
D O I
10.1038/s41534-019-0217-0
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Universal quantum computers are potentially an ideal setting for simulating many-body quantum dynamics that is out of reach for classical digital computers. We use state-of-the-art IBM quantum computers to study paradigmatic examples of condensed matter physics-we simulate the effects of disorder and interactions on quantum particle transport, as well as correlation and entanglement spreading. Our benchmark results show that the quality of the current machines is below what is necessary for quantitatively accurate continuous-time dynamics of observables and reachable system sizes are small comparable to exact diagonalization. Despite this, we are successfully able to demonstrate clear qualitative behaviour associated with localization physics and many-body interaction effects.
引用
收藏
页数:13
相关论文
共 91 条
[1]   Recent progress in many-body localization [J].
Abanin, Dmitry A. ;
Papic, Zlatko .
ANNALEN DER PHYSIK, 2017, 529 (07)
[2]  
Amico M., 2019, EXPT STUDY SHORS FAC
[3]   ABSENCE OF DIFFUSION IN CERTAIN RANDOM LATTICES [J].
ANDERSON, PW .
PHYSICAL REVIEW, 1958, 109 (05) :1492-1505
[4]  
Aspuru-Guzik A, 2012, NAT PHYS, V8, P285, DOI [10.1038/nphys2253, 10.1038/NPHYS2253]
[5]   A quantum gas microscope for detecting single atoms in a Hubbard-regime optical lattice [J].
Bakr, Waseem S. ;
Gillen, Jonathon I. ;
Peng, Amy ;
Foelling, Simon ;
Greiner, Markus .
NATURE, 2009, 462 (7269) :74-U80
[6]   Superconducting quantum circuits at the surface code threshold for fault tolerance [J].
Barends, R. ;
Kelly, J. ;
Megrant, A. ;
Veitia, A. ;
Sank, D. ;
Jeffrey, E. ;
White, T. C. ;
Mutus, J. ;
Fowler, A. G. ;
Campbell, B. ;
Chen, Y. ;
Chen, Z. ;
Chiaro, B. ;
Dunsworth, A. ;
Neill, C. ;
O'Malley, P. ;
Roushan, P. ;
Vainsencher, A. ;
Wenner, J. ;
Korotkov, A. N. ;
Cleland, A. N. ;
Martinis, John M. .
NATURE, 2014, 508 (7497) :500-503
[7]   Quantum machine learning [J].
Biamonte, Jacob ;
Wittek, Peter ;
Pancotti, Nicola ;
Rebentrost, Patrick ;
Wiebe, Nathan ;
Lloyd, Seth .
NATURE, 2017, 549 (7671) :195-202
[8]   Quantum-information processing with circuit quantum electrodynamics [J].
Blais, Alexandre ;
Gambetta, Jay ;
Wallraff, A. ;
Schuster, D. I. ;
Girvin, S. M. ;
Devoret, M. H. ;
Schoelkopf, R. J. .
PHYSICAL REVIEW A, 2007, 75 (03)
[9]   Many-body physics with ultracold gases [J].
Bloch, Immanuel ;
Dalibard, Jean ;
Zwerger, Wilhelm .
REVIEWS OF MODERN PHYSICS, 2008, 80 (03) :885-964
[10]   Characterizing quantum supremacy in near-term devices [J].
Boixo, Sergio ;
Isakov, Sergei, V ;
Smelyanskiy, Vadim N. ;
Babbush, Ryan ;
Ding, Nan ;
Jiang, Zhang ;
Bremner, Michael J. ;
Martinis, John M. ;
Neven, Hartmut .
NATURE PHYSICS, 2018, 14 (06) :595-600