Both cationic and anionic redox chemistry in a P2-type sodium layered oxide

被引:137
作者
Wang, Peng-Fei [1 ]
Xiao, Yao [2 ]
Piao, Nan [1 ]
Wang, Qin-Chao [3 ]
Ji, Xiao [1 ]
Jin, Ting [1 ]
Guo, Yu-Jie [2 ]
Liu, Sufu [1 ]
Deng, Tao [1 ]
Cui, Chunyu [1 ]
Chen, Long [1 ]
Guo, Yu-Guo [2 ]
Yang, Xiao-Qing [3 ]
Wang, Chunsheng [1 ]
机构
[1] Univ Maryland, Dept Chem & Biomol Engn, College Pk, MD 20742 USA
[2] Chinese Acad Sci, CAS Res Educ Ctr Excellence Mol Sci, CAS Key Lab Mol Nanostruct & Nanotechnol, BNLMS,Inst Chem, Beijing 100190, Peoples R China
[3] Brookhaven Natl Lab, Upton, NY 11973 USA
关键词
Sodium-ion batteries; Cathode; Anionic redox; P2-type; Electrochemistry; HIGH-CAPACITY; CATHODE; PHASE; COMPOSITE;
D O I
10.1016/j.nanoen.2020.104474
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The demand for high energy Na-ion batteries has promoted intensive research on high energy oxygen redox chemistry in layered transition metal oxide cathodes. However, most layered cathodes with oxygen redox might suffer from irreversible electrochemical reaction, fast capacity decay and underlying O-2 release. Herein, we report that copper element with a strong electronegativaty can stablize Na-deficient P-2-Na2/3Mn0.72Cu0.22Mg0.06O2 phase to achieve both cationic and anionic redox chemistry. Hard and soft X-ray absorption spectra demonstrate that all Mn3+/Mn4+, Cu2+/Cu3+ and O2-/(O-2)(n-) participate in the redox reaction upon Na+ ions extraction and insertion. Density functional theory (DFT) calculations confirm that the strong covalency between copper and oxygen ensures the cationic and anionic redox activity in P-2-Na2/3Mn0.72Cu0.22Mg0.06O2 phase. The P-2-Na2/3Mn0.72Cu0.22Mg0.06O2 cathode could deliver stable cycling life with 87.9% capacity retention at 1C during 100 cycles, as well as high rate performance (70.3 mA h g(-1) cycled at 10C). Our findings not only provide a promising guidelines to enhance the electrochemical performance of layered oxides based on anionic redox activity, but also explore the potential science behind oxygen redox process.
引用
收藏
页数:8
相关论文
共 45 条
[31]   Reversible anionic redox activity in Na3RuO4 cathodes: a prototype Na-rich layered oxide [J].
Qiao, Yu ;
Guo, Shaohua ;
Zhu, Kai ;
Liu, Pan ;
Li, Xiang ;
Jiang, Kezhu ;
Sun, Cheng-Jun ;
Chen, Mingwei ;
Zhou, Haoshen .
ENERGY & ENVIRONMENTAL SCIENCE, 2018, 11 (02) :299-305
[32]  
Rong XH, 2019, JOULE, V3, P503, DOI 10.1016/j.joule.2018.10.022
[33]   Structure-Induced Reversible Anionic Redox Activity in Na Layered Oxide Cathode [J].
Rong, Xiaohui ;
Liu, Jue ;
Hu, Enyuan ;
Liu, Yijin ;
Wang, Yi ;
Wu, Jinpeng ;
Yu, Xiqian ;
Page, Katharine ;
Hu, Yong-Sheng ;
Yang, Wanli ;
Li, Hong ;
Yang, Xiao-Qing ;
Chen, Liquan ;
Huang, Xuejie .
JOULE, 2018, 2 (01) :125-140
[34]   Anionic redox chemistry in Na-rich Na2Ru1-ySnyO3 positive electrode material for Na-ion batteries [J].
Rozier, Patrick ;
Sathiya, Mariyappan ;
Paulraj, Alagar-Raj ;
Foix, Dominique ;
Desaunay, Thomas ;
Taberna, Pierre-Louis ;
Simon, Patrice ;
Tarascon, Jean-Marie .
ELECTROCHEMISTRY COMMUNICATIONS, 2015, 53 :29-32
[35]   Nature of the "Z"-phase in layered Na-ion battery cathodes [J].
Somerville, James W. ;
Sobkowiak, Adam ;
Tapia-Ruiz, Nuria ;
Billaud, Juliette ;
Lozano, Juan G. ;
House, Robert A. ;
Gallington, Leighanne C. ;
Ericsson, Tore ;
Haggstrom, Lennart ;
Roberts, Matthew R. ;
Maitra, Urmimala ;
Bruce, Peter G. .
ENERGY & ENVIRONMENTAL SCIENCE, 2019, 12 (07) :2223-2232
[36]   Understanding the Low-Voltage Hysteresis of Anionic Redox in Na2Mn3O7 [J].
Song, Bohang ;
Tang, Mingxue ;
Hu, Enyuan ;
Borkiewicz, Olaf J. ;
Wiaderek, Kamila M. ;
Zhang, Yiman ;
Phillip, Nathan D. ;
Liu, Xiaoming ;
Shadike, Zulipiya ;
Li, Cheng ;
Song, Likai ;
Hu, Yan-Yan ;
Chi, Miaofang ;
Veith, Gabriel M. ;
Yang, Xiao-Qing ;
Liu, Jue ;
Nanda, Jagjit ;
Page, Katharine ;
Huq, Ashfia .
CHEMISTRY OF MATERIALS, 2019, 31 (10) :3756-3765
[37]   Layered Oxide Cathodes for Sodium-Ion Batteries: Phase Transition, Air Stability, and Performance [J].
Wang, Peng-Fei ;
You, Ya ;
Yin, Ya-Xia ;
Guo, Yu-Guo .
ADVANCED ENERGY MATERIALS, 2018, 8 (08)
[38]   Na+/vacancy disordering promises high-rate Na-ion batteries [J].
Wang, Peng-Fei ;
Yao, Hu-Rong ;
Liu, Xin-Yu ;
Yin, Ya-Xia ;
Zhang, Jie-Nan ;
Wen, Yuren ;
Yu, Xiqian ;
Gu, Lin ;
Guo, Yu-Guo .
SCIENCE ADVANCES, 2018, 4 (03)
[39]   Tuning P2-Structured Cathode Material by Na-Site Mg Substitution for Na-Ion Batteries [J].
Wang, Qin-Chao ;
Meng, Jing-Ke ;
Yue, Xin-Yang ;
Qiu, Qi-Qi ;
Song, Yun ;
Wu, Xiao-Jin ;
Fu, Zheng-Wen ;
Xia, Yong-Yao ;
Shadike, Zulipiya ;
Wu, Jinpeng ;
Yang, Xiao-Qing ;
Zhou, Yong-Ning .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2019, 141 (02) :840-848
[40]   Research Development on Sodium-Ion Batteries [J].
Yabuuchi, Naoaki ;
Kubota, Kei ;
Dahbi, Mouad ;
Komaba, Shinichi .
CHEMICAL REVIEWS, 2014, 114 (23) :11636-11682