The quest for exact solutions to nonlinear partial differential equations has become a remarkable research subject in recent years. In this study, we employ the Kudryashov method and sub-equation method to retrieve the bright and dark soliton solutions of the generalized nonlinear Schrodinger-Korteweg-de Vries equations. Other soliton-type solutions like the periodic, singular, and rational solutions are achieved as well. These coupled equations occur in phenomena of interactions between short and long dispersive waves which are significant in various fields of applied sciences and engineering. The solutions obtained in this study have been verified with the help of the Mathematica package software. Furthermore, we present graphical representations of the solutions of bright and dark solitons for a useful understanding of the behavior and physical structures of the coupled equations considered.